21,418 research outputs found

    Scaling, domains, and states in the four-dimensional random field Ising magnet

    Get PDF
    The four dimensional Gaussian random field Ising magnet is investigated numerically at zero temperature, using samples up to size 64464^4, to test scaling theories and to investigate the nature of domain walls and the thermodynamic limit. As the magnetization exponent β\beta is more easily distinguishable from zero in four dimensions than in three dimensions, these results provide a useful test of conventional scaling theories. Results are presented for the critical behavior of the heat capacity, magnetization, and stiffness. The fractal dimensions of the domain walls at criticality are estimated. A notable difference from three dimensions is the structure of the spin domains: frozen spins of both signs percolate at a disorder magnitude less than the value at the ferromagnetic to paramagnetic transition. Hence, in the vicinity of the transition, there are two percolating clusters of opposite spins that are fixed under any boundary conditions. This structure changes the interpretation of the domain walls for the four dimensional case. The scaling of the effect of boundary conditions on the interior spin configuration is found to be consistent with the domain wall dimension. There is no evidence of a glassy phase: there appears to be a single transition from two ferromagnetic states to a single paramagnetic state, as in three dimensions. The slowing down of the ground state algorithm is also used to study this model and the links between combinatorial optimization and critical behavior.Comment: 13 pages, 16 figure

    Effects of Disorder on Electron Transport in Arrays of Quantum Dots

    Get PDF
    We investigate the zero-temperature transport of electrons in a model of quantum dot arrays with a disordered background potential. One effect of the disorder is that conduction through the array is possible only for voltages across the array that exceed a critical voltage VTV_T. We investigate the behavior of arrays in three voltage regimes: below, at and above the critical voltage. For voltages less than VTV_T, we find that the features of the invasion of charge onto the array depend on whether the dots have uniform or varying capacitances. We compute the first conduction path at voltages just above VTV_T using a transfer-matrix style algorithm. It can be used to elucidate the important energy and length scales. We find that the geometrical structure of the first conducting path is essentially unaffected by the addition of capacitive or tunneling resistance disorder. We also investigate the effects of this added disorder to transport further above the threshold. We use finite size scaling analysis to explore the nonlinear current-voltage relationship near VTV_T. The scaling of the current II near VTV_T, I(VVT)βI\sim(V-V_T)^{\beta}, gives similar values for the effective exponent β\beta for all varieties of tunneling and capacitive disorder, when the current is computed for voltages within a few percent of threshold. We do note that the value of β\beta near the transition is not converged at this distance from threshold and difficulties in obtaining its value in the VVTV\searrow V_T limit

    Exact Algorithm for Sampling the 2D Ising Spin Glass

    Get PDF
    A sampling algorithm is presented that generates spin glass configurations of the 2D Edwards-Anderson Ising spin glass at finite temperature, with probabilities proportional to their Boltzmann weights. Such an algorithm overcomes the slow dynamics of direct simulation and can be used to study long-range correlation functions and coarse-grained dynamics. The algorithm uses a correspondence between spin configurations on a regular lattice and dimer (edge) coverings of a related graph: Wilson's algorithm [D. B. Wilson, Proc. 8th Symp. Discrete Algorithms 258, (1997)] for sampling dimer coverings on a planar lattice is adapted to generate samplings for the dimer problem corresponding to both planar and toroidal spin glass samples. This algorithm is recursive: it computes probabilities for spins along a "separator" that divides the sample in half. Given the spins on the separator, sample configurations for the two separated halves are generated by further division and assignment. The algorithm is simplified by using Pfaffian elimination, rather than Gaussian elimination, for sampling dimer configurations. For n spins and given floating point precision, the algorithm has an asymptotic run-time of O(n^{3/2}); it is found that the required precision scales as inverse temperature and grows only slowly with system size. Sample applications and benchmarking results are presented for samples of size up to n=128^2, with fixed and periodic boundary conditions.Comment: 18 pages, 10 figures, 1 table; minor clarification

    Minimal spanning trees at the percolation threshold: a numerical calculation

    Full text link
    The fractal dimension of minimal spanning trees on percolation clusters is estimated for dimensions dd up to d=5d=5. A robust analysis technique is developed for correlated data, as seen in such trees. This should be a robust method suitable for analyzing a wide array of randomly generated fractal structures. The trees analyzed using these techniques are built using a combination of Prim's and Kruskal's algorithms for finding minimal spanning trees. This combination reduces memory usage and allows for simulation of larger systems than would otherwise be possible. The path length fractal dimension dsd_{s} of MSTs on critical percolation clusters is found to be compatible with the predictions of the perturbation expansion developed by T.S.Jackson and N.Read [T.S.Jackson and N.Read, Phys.\ Rev.\ E \textbf{81}, 021131 (2010)]

    Which measures of spin-glass overlaps are informative?

    Full text link
    The nature of equilibrium states in disordered materials is often studied using an overlap function P(q), the probability of two configurations having similarity q. Exact sampling simulations of a two-dimensional proxy for three-dimensional spin glasses indicate that common measures of P(q) in smaller samples do not decide between theoretical pictures. Strong corrections result from P(q) being an average over many scales, as seen in a toy droplet model. However, the median of the integrals of sample-dependent P(q) curves shows promise for deciding the thermodynamic behavior.Comment: 4 pages, 5 figure

    Apollo experience report: The AN/ARD-17 direction finding system

    Get PDF
    This report contains a statement of the operational philosophy and requirements leading to the development of the AN/ARD-17 direction-finding system. The technical problems encountered and the solutions devised in the AN/ARD-17 development are discussed. An evaluation of the system under actual operational conditions is included

    Irrational mode locking in quasiperiodic systems

    Get PDF
    A model for ac-driven systems, based on the Tang-Wiesenfeld-Bak-Coppersmith-Littlewood automaton for an elastic medium, exhibits mode-locked steps with frequencies that are irrational multiples of the drive frequency, when the pinning is spatially quasiperiodic. Detailed numerical evidence is presented for the large-system-size convergence of such a mode-locked step. The irrational mode locking is stable to small thermal noise and weak disorder. Continuous time models with irrational mode locking and possible experimental realizations are discussed.Comment: 4 pages, 3 figures, 1 table; revision: 2 figures modified, reference added, minor clarification
    corecore