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Scaling, domains, and states in the four-dimensional random field Ising magnet

A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, New York 13244

(Dated: August 8, 2002)

The four dimensional Gaussian random field Ising magnet is investigated numerically at zero
temperature, using samples up to size 644, to test scaling theories and to investigate the nature
of domain walls and the thermodynamic limit. As the magnetization exponent β is more easily
distinguishable from zero in four dimensions than in three dimensions, these results provide a useful
test of conventional scaling theories. Results are presented for the critical behavior of the heat
capacity, magnetization, and stiffness. The fractal dimensions of the domain walls at criticality
are estimated. A notable difference from three dimensions is the structure of the spin domains:
frozen spins of both signs percolate at a disorder magnitude less than the value at the ferromagnetic
to paramagnetic transition. Hence, in the vicinity of the transition, there are two percolating
clusters of opposite spins that are fixed under any boundary conditions. This structure changes
the interpretation of the domain walls for the four dimensional case. The scaling of the effect of
boundary conditions on the interior spin configuration is found to be consistent with the domain
wall dimension. There is no evidence of a glassy phase: there appears to be a single transition from
two ferromagnetic states to a single paramagnetic state, as in three dimensions. The slowing down
of the ground state algorithm is also used to study this model and the links between combinatorial
optimization and critical behavior.

I. INTRODUCTION

As the random field Ising magnet (RFIM) is a rela-
tively well-studied model of a disordered material, gen-
eral questions about thermodynamic phases and transi-
tions have been addressed using it as a model system.
Experimental studies of random field Ising magnets are
also available for comparison with theoretical predictions.
The statics of the RFIM have been studied in detail
theoretically, both analytically and numerically. It has
been proven that there are at least two phases in di-
mensions greater than two,1 scaling arguments have been
constructed,2 the replica approach has been applied,3 and
the model has been analyzed on hierarchical lattices.4

The RFIM also has a rich numerical history, including
extensive Monte Carlo simulations5,6,7,8 and zero tem-
perature ground state studies.9,10,11,12,13,14,15,16,17 Some
questions about the model remain unsettled, though, and
the physical picture of excitations is somewhat incom-
plete. Studying these properties of the model will be use-
ful in building a more complete picture, especially when
addressing questions about dynamics.

There has been an active discussion about the na-
ture of the phase diagram for the random field Ising
model (RFIM). One controversy has been whether the
transition from the ferromagnetic phase to paramagnetic
phase, which occurs as the disorder strength or temper-
ature is varied, is continuous in three dimensions.2,5,12,13

Recent work16,17 provides further strong evidence that
the transition is second order in this case and that pre-
viously derived scaling relations apply. However, as the
ratio β/ν of the order parameter exponent β to the cor-
relation length exponent ν is very small, some scaling
predictions are hard to verify. It is of interest to pur-
sue this investigation in higher dimension, where β/ν is
larger, to verify the general theoretical picture suggested

for the RFIM in finite dimensions.

II. SUMMARY OF RESULTS

Numerical simulations have been carried out for the
Gaussian RFIM on a simple hypercubic lattice in four
dimensions. The Hamiltonian (for a review of the RFIM
see Ref. 2) is defined over spin configurations {si = ±1},

H = −J
∑

〈ij〉

sisj −
∑

i

hisi, (1)

with 〈ij〉 indicating nearest neighbor sites i, j and the
random fields hi are chosen independently from a Gaus-
sian distribution with mean zero and variance h2. Here
the energy scale is fixed by setting J = 1 in the computa-
tions, with temperature T = 0. Exact ground states for
this Hamiltonian are found using a max-flow algorithm,
as in previous work.9,10,11,12,13,14,15,16,17

The magnetization is more useful in studying the 4D
RFIM than the 3D RFIM, as the magnetization ex-
ponent β is more easily distinguished from zero. The
Binder parameter is used to locate the ferromagnetic-
to-paramagnetic transition relatively precisely at hc =
4.179(2). A finite-size study of the magnetization allows
the ratio β/ν to be estimated as β/ν = 0.19(3). Besides
its relevance to the magnetization, this ratio is impor-
tant in studying the nature of the states and comparing
domain wall exponents.

The ground state energies and their dependence on
boundary conditions can be used to study the heat ca-
pacity and stiffness exponents of the RFIM. The stiffness
(violation of hyperscaling) exponent is determined to be
θ = 1.82 ± 0.07, consistent with conventional exponent
bounds.18,20 Unlike the 3D case, the value for θ is nu-
merically distinguishable from d/2. The heat capacity
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exponent inferred from the ground state energies is esti-
mated as α = 0.26±0.05, apparently distinct from α = 0
and again consistent with the conventional disorder vari-
ant of Widom scaling,18,19 (d − θ)ν = 2 − α.

The spatial structure of the spins for the 4D RFIM is
found to differ from the structure for the 3D RFIM, over
the length scales studied. In the case of three dimensions,
the spins appear to form a nested sets of domain walls
at criticality.16,19 In 4D, the frozen spins (those invariant
under all boundary conditions) percolate in the ferromag-
netic phase. This implies that domain walls cannot be
simply identified as surfaces between connected sets of
same-sign spins. Simulations show that the frozen spins
percolate at a value hf

p = 3.680(5). At a slightly higher
value of h, hm

p , the minority spins (frozen spins of a sign
opposite to the magnetization) percolate. Evidence is
given in Sec. VI that this percolation takes place even
when the spins are coarse grained, with the critical value
of h dependent on the scale of the coarse graining. While
this percolation does not affect thermodynamic quanti-
ties such as the bond part of the mean ground state
energy, EJ , or the magnetization, the definition of the
domain walls and the description of the spin-spin corre-
lation function turns out to not be as straightforward as
in the case of d = 3.

The qualitative nature of the thermodynamic limit in
the 4D RFIM can be addressed by studying the influ-
ence of boundary conditions on the configuration in a
fixed window. In Sec. VII, the effect of up (+) and down
(−) boundary conditions at the surface of the sample are
compared with periodic boundary conditions (P ). The
probability of the interior spins in the P configuration
being identical to either the + or − configuration ap-
proaches 1, as L → ∞, for all h. Taking the periodic
boundary condition as a generic case, then, in the large
volume limit, the interior of the ground state configura-
tion is found in one of the two ferromagnetic states for
h < hc or the paramagnetic state for h > hc. The prob-
ability for the P configuration to be either + or − in
the interior scales in a manner consistent with the 3D
results16 and the general case where there are few states
in the thermodynamic limit.21

A. Algorithm and error bars

The variant of the push-relabel algorithm used is the
same as described in Ref. 16. Near criticality, ground
states for samples of size 644 were found in about 3000 s
using 1 GHz Pentium III processors. Ground states
for smaller samples were found using a faster, but less
memory-efficient, version of the algorithm; using the
same processors, near-critical samples of volume 324 were
solved in approximately 60 s.

Error bars for exponent values throughout this paper
include both estimated systematic errors due to appar-
ent finite size effects and errors due to statistical uncer-
tainties; the error bars represent an estimated range of
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FIG. 1: Plot of the sample average of the absolute value of
the magnetization, |m|, of the 4D RFIM as a function of dis-
order h and system size L, for periodic boundary conditions.

values in which the value lies, with high confidence. In
contrast, error bars in the figures for raw data reflect 1σ
statistical uncertainties computed from the standard de-
viation, except for the Binder cumulant, where the error
bars were computed by resampling. Plots of fitted values,
such as estimated peak heights, include both statistical
errors and an error bar that reflects fluctuations in values
that result from varying the degree of the polynomial fit
and the chosen range of the fit.

In some of the plots, exponent values that differ from
the “best” value from other plots are used to scale the
data, to indicate that there is some flexibility in the ex-
ponent values, depending on the method. All of the val-
ues derived for the exponents from various methods are
consistent with each other to within statistical and esti-
mated systematic errors. Table I gives a summary of the
numerical values of the best estimates for the exponents.

III. MAGNETIZATION

As the exponent β is more readily determined in the
4D RFIM, compared with the 3D case, it is useful in 4D
to study the magnetization as a first guide to the critical
behavior and to locate the transition. The mean value of
the absolute value of the magnetization is defined as

|m| = N−1|
∑

i

si|, (2)

where the overline indicates an average over samples of
volume N = L4. The magnetization is directly computed
for each sample from the ground state with periodic
boundary conditions. The dependence of the sample-
averaged magnetization on disorder h is plotted in Fig. 1.
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TABLE I: Table of numerical estimates for the 4D Gaussian RFIM on the simple hypercubic lattice.

Symbol Value Definition and data used

hc 4.179 ± 0.002 Critical value of the random field for coupling J = 1.

The critical point is determined primarily from scaling of magnetization

distribution (e.g., Binder cumulant as shown in Fig. 2);

this hc is consistent with extrapolation in L of the location of peaks in the

specific heat and the number of operations used to find the ground state

and the value at which the probability of stiffness being zero is independent of L.

hf
p 3.680 ± 0.005 Value of the random field at which the frozen spins percolate. Sec. VI.

hm
p 3.875 ± 0.005 Value of the random field at which the minority spins percolate. See Sec. VI and Fig. 11.

β/ν 0.19 ± 0.03 Ratio of magnetization exponent β to correlation length exponent ν.

Determined from the scaling of |m| vs. L at criticality for 12 ≤ L ≤ 64.

See Fig. 3, Fig. 4 and Sec. III.

α/ν 0.31 ± 0.04 Heat capacity exponent α divided by ν.

Found from peaks Cmax(L), computed from the derivative of fit to EJ (h, L).

See Figs. 6 and 7.

(α − 1)/ν −0.94 ± 0.06 Combination of heat capacity exponent α and ν.

Found from fit to power law for the discrete estimate of dEJ/d ln(L) evaluated at peak of C.

ν 0.82 ± 0.06 Correlation length exponent.

Jointly estimated from magnetization scaling, α/ν and (α − 1)/ν, and the scaling of the stiffness.

with L. Consistent with the scaling of the width of the number of algorithm operations.

β 0.16 ± 0.03 Magnetization exponent, found from β/ν and ν.

α 0.26 ± 0.05 Heat capacity exponent, found from α/ν and ν.

θ 1.82 ± 0.07 Violation of hyperscaling or the scaling of the stiffness at hc. .

Found from scaling of stiffness with L and h − hc, see Sec. V and Fig. 9.

ds 3.94 ± 0.06 Fractal dimension of connected domain wall at h = hc.

Note that the result is indistinguishable from d = 4.

See Fig. 10 and Sec. V.

dI 3.20 ± 0.12 Incongruent fractal dimension of domain wall at criticality.

Box counting of incongruent volumes (disconnected wall). See Sec. V.

Consistent with scaling of state overlap probabilities shown in Fig. 13 and Fig. 14.

dJ 2.94 ± 0.12 Energy “fractal dimension” at h = hc. Found from the exchange part, ΣJ , of the stiffness.

See Fig. 10 and Sec. V.

A. Binder cumulant and hc

One method for determining the value of hc is to
use the Binder cumulant. The value of the cumulant,
g = (3−m4/m2)/2, should be g = 1 in the ferromagnetic
phase and should take on the value g = 0 in the param-
agnetic phase. The fixed point hc is found by the inter-
section of the g(h) curves for various L. Some caution
should be used with this method, as the magnetization
exponent is small, so that the sample distribution of m is
bimodal for even large samples near the transition. The
assumptions of Gaussian behavior about the mean in the
paramagnetic phase are difficult to achieve. Nonetheless,
the plots of g(h) show a consistent behavior that indicates
the finite-size trends in the data for the magnetization.
The plot of g(h) for L = 4 through L = 64 is shown in
Fig. 2. For smaller system sizes, about 5 × 104 ground
states were found; for the L = 64 systems near hc, about

5 × 103 ground states were computed. The apparent in-
tersection point is gc ≈ 0.975, but this quantity likely
has not converged to its scaling value. The location of
the transition can be assigned with more certainty to the
range hc = 4.179 ± 0.002. This is an acceptable value
for the set of lengths used here and likely will continue
to hold for scales that are somewhat larger. It is also
quite consistent with the scaling of the stiffness, location
of the specific heat peaks, and the algorithmic slowing
down discussed in the other sections of this paper.

B. Magnetization

The ratio of the magnetization exponent β to the cor-
relation exponent length ν is computed from the effective
finite size exponent for the magnetization. Given stan-
dard finite size scaling, the magnetization at the transi-
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FIG. 2: Plot of the Binder cumulant (3 − m4/m2)/2 as a
function of h for various L. The curves are smoothed spline
fits to indicate the trends. This plot is used to determine the
location of the transition, hc = 4.179(2).

tion will scale as m(hc) ∼ L−β/ν. The local exponent β/ν

is found by the discrete derivative of ln(|m|) with respect
to ln(L). The results of this computation are plotted in
Fig. 3. This evaluation gives a location for the transi-
tion that is consistent, but slightly less precise, than the
Binder cumulant analysis. The value of the local expo-
nent that is most consistent with a constant value gives
the estimate

β/ν = 0.19 ± 0.03. (3)

In Fig. 4, the scaled magnetization (for the same samples
used to compute g(h)) is plotted as a function of scaled
distance to the transition, in agreement with the finite-
size scaling form

|m| = L−β/νfm[(h − hc)L
1/ν ], (4)

where the value ν = 0.83 gives the best scaling collapse,
with fixed β/ν = 0.19 and hc = 4.179. The value of ν
in Table I indicates the range of values found by distinct
estimates; there is no clear best measurement of ν in the
data.

C. Fluctuations in the magnetization

In addition to the scaling of the mean magnetization,
the fluctuations in the magnetization can be checked
for consistency with finite-size scaling. The sample-
to-sample fluctuations ∆M in the total magnetization
|M | = N |m| =

∑

i si can be estimated, using the num-
ber of independent volumes and the fluctuations in the
magnetization of such volumes. Defining the finite size
scaling variable x = (h − hc)L

1/ν , at large |x|, the rele-
vant volumes are of size ξ ∼ (h − hc)

−ν , while at small
|x|, the volume is finite-size limited. The fluctuations in

10
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FIG. 3: Plot of estimates for β/ν found from the discrete

derivative (β/ν)loc = ln(|m|(h, L2)/|m|(h, L1))/ ln(L2/L1).
The apparent convergence to a uniform value for h ≈ 4.18
implies that the value β/ν = 0.19(3) accurately describes the
effective critical behavior for L ≈ 12 → 64.

-15 -10 -5 0 5 10 15

(h-h
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1/ν
0.0
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|m
| L

β/
ν
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L = 22
L = 32
L = 44
L = 64ν = 0.83

β/ν = 0.19
h

c
 = 4.179

FIG. 4: Scaled magnetization |m|Lβ/ν as a function of scaled

disorder (h − hc)L
1/ν for β/ν = 0.19 and ν = 0.83.

the magnetization over a volume ℓd are Mℓ ∼ ℓd−β/ν and
the number of such volumes is nℓ ∼ (L/ℓ)d. Taking fluc-
tuations over each volume to be independent, one can
write a version of the scaling as

∆M ∼ Mℓ
√

nℓ ∼ Ld/2(h − hc)
dν/2−βf∆(x), (5)

where in the limit of large |x|, f∆ approaches a constant
whose value depends on the sign of |x|. For small values
of |x|, f∆(x) ∼ |x|−β+dν/2. This scaling form is verified
by the data displayed in Fig. 5. The data at small |x|
is roughly consistent with the range of power laws −β +
dν/2 ≈ 1.48 ± 0.15 plotted in Fig. 5 (this comparison is
rather sensitive to the location of hc and the value of
ν.) At large |x|, ∆ML−d/2(h − hc)

β−dν/2 approaches a
constant.



5

0.1 1 10 100

|h-h
c
| L

1/ν
0.01

0.1

1

10
   

  
|M

| rm
s

L
-d

/2
 (

h-
h c)β-

dν
/2

L = 4
L = 6
L = 8
L = 12
L = 16
L = 22
L = 32
L = 44
L = 64
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c
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FIG. 5: Plot of the scaled fluctuations in the magnitude of
the magnetization |M |. The scaling variable |h − hc|L

1/ν on
the horizontal axis is the scaled distance to the critical point
while the vertical axis variable, |M |rmsL

−d/2(h−hc)
dν/2−β is

the magnitude of the fluctuation in the magnetization, nor-
malized by the expected number of correlation volumes and
the magnetization of the correlation volumes of linear size
ξ ∼ (h − hc)

−ν . The approach to a constant value at large
scaling variable is consistent with independently oriented re-
gions for h > hc (upper branch) and magnetization fluctua-
tions about the ferromagnetic state over regions of size ξ when
h < hc (lower branch.) The solid line represents a power law
exponent −β + dν/2 ≈ 1.48, while the upper (lower) dashed
line has slope 1.63 (1.33.)

IV. HEAT CAPACITY

The specific heat of the 3D RFIM is a quantity
that can be measured experimentally, directly22,23 or
indirectly.23,24 The divergence of the specific heat has
also been estimated numerically, though not all estimates
agree and the experimental situation is unclear. Because
of these discrepancies, it is useful to also study this quan-
tity in the case of four dimensions, to check the validity
of the standard scaling picture.

The heat capacity can be estimated using ground state
calculations and applying thermodynamic relations em-
ployed by Hartmann and Young.15 This approach was
also applied in Refs. 16 and 25. The method relies on
studying the singularities in the bond energy density

EJ = L−d
∑

〈ij〉

sisj . (6)

This bond energy density is the first derivative ∂E/∂J of
the ground state energy with respect to h (equivalently,
up to constants, with respect to J .) The derivative of
the sample averaged quantity EJ with respect to h then
gives the second derivative with respect to h of the total
energy and thus the sample-averaged heat capacity C.
The singularities in C can also be studied by computing
the singular part of EJ , as EJ is just the integral of C
with respect to h. The finite-size scaling for the singular

part of the specific heat Cs is

Cs ∼ Lα/νC̃[(h − hc)L
1/ν ], (7)

while the scaling for the leading part (through the first
singular term) of the sample averaged bond energy at
h = hc is

EJ,s(L, h = hc) = c1 + c2L
(α−1)/ν , (8)

with c1 and c2 constants.
The data analysis is based upon direct fits using EJ .

This approach avoids complications that arise in com-
puting the uncertainties when fitting to finite-differenced
estimates for C, but is otherwise equivalent to fitting to
such finite differences. The fit was a least squares fit of
a cubic to h(EJ) for fixed values of L. This fit to the
inverse function was more stable than fitting to EJ (h).
The fit function was then inverted to give the estimate for
EJ(h). The maximum slope of this estimated function is
in turn used to estimate the peak in C(h) for each L. The
uncertainties at any point, especially when determining
the peak value Cmax(L), in the analysis can be estimated
using a bootstrap technique (resampling the data.) The
data for EJ are plotted directly in part (a) of Fig. 6.
The samples used were the same as used for the magne-
tization and Binder cumulant analysis. The derivatives
of the fit are plotted in part (b) of this figure and com-
pared with the heat capacity values determined by finite
differencing. Note that the finite differenced values are
relatively noisy due to the differentiation. This apparent
noise can be reduced by less refinement in the values of
h sampled, but this would reduce the resolution in C(h)
and the location of the peak in C. By directly fitting to
EJ rather than the finite differences, this complication is
reduced (but could be managed with appropriate care in
the error analysis.)

The estimates for the maximum values of the heat
capacity are plotted as a function of L in Fig. 7(a).
The relatively precise data are not consistently fit by a
power law until L > 16. The fit for these values gives
α/ν = 0.31 ± 0.04, where the errors are purely statis-
tical. Given the short range of the fit (from L = 22
to L = 64), one must allow for the possibility of cor-
rections to scaling giving a different value at larger sys-
tem sizes (possibly slightly lower.) A fit of these data
to Cmax ∼ ln(L) is less successful, however (see the in-
set in Fig. 7(a).) As always, it is difficult to distinguish
a logarithmic behavior, suggested for Cmax in Ref. 25,
from a small-power-law behavior. In Fig. 7(b), the local
discrete derivatives are plotted for the cases where the
behavior should be a power law (main part of the figure)
and logarithmic (inset.) The power law does seem to be
more consistent with a convergence to a fixed slope for
this range of sizes. Though the fits are not definitive, the
fitted power law behavior is most consistent with scaling
relations and other data and does seem to explain the
computed singularity in the bond part of the energy.

The specific heat can also be used to infer ν. This
can be done directly through scaling the widths of the
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FIG. 6: (a) The points show the computed dependence of EJ ,
the number density of broken bonds, on h, for L = 4 . . . 64
(not all L values are included, for clarity.) Fits to cubics for
the inverse function h(EJ) are shown. (b) Estimated heat
capacity dEJ/dh, derived from the differences between the
EJ values. Solid lines show the derivatives of the fits to EJ

defined in the text. These derivatives are used to estimate
the heights of the peaks in the specific heat, Cmax(L).

peaks in C, but a more robust procedure was to use the
indirect procedure of fitting EJ , which, being the integral
over h of C, incorporates the width of the peak in C. The
quantity (α− 1)/ν was found by using the fitted value of
EJ at hc. The derivative of EJ (hc) with respect to ln(L)
gives the power law (α − 1)/ν = −0.94± 0.06. With the
value for α/ν, this gives the estimate ν = 0.80 ± 0.06.

V. STIFFNESS & DOMAIN WALLS

The nature of responses to external perturbations is
used to characterize distinct phases, in general. One of
the more important responses to study is the response to
changes in the boundary conditions. For example, ferro-
magnetic phases in pure materials can be identified due

10 100
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(a)
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) 
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/d ln(L)
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FIG. 7: (a) Plot of Cmax(L) vs. L. The solid line is a fit

to the finite size scaling form Cmax(L) ∼ L−α/ν , with α/ν =
0.31 ± 0.04. The inset shows a semi-log plot with a least-
squares fit to the last 3 data points (L ≥ 32.) (b) Local
derivatives of the plots in (a).

to the finite energy density of domain walls induced by
twisted boundary conditions. The application of twisted
boundary conditions to stiffness and domain walls to
disordered systems was introduced for spin glasses by
McMillan26 and Bray and Moore.27 Stiffness and domain
walls were studied for the 3D RFIM in Ref. 16. The ap-
proach taken quantities studied here for the 4D RFIM
are the same, though the results are somewhat distinct
in flavor from the 3D results.

Measuring the stiffness quantifies the change in en-
ergy due to a change in boundary conditions. The sym-
metrized stiffness is defined as

Σ = (E+− + E−+ − E++ − E−−)/2, (9)

where Eab is the ground state energy for boundary spins
fixed to be a at one end of the sample and b at the other
end of the sample (periodic boundary conditions are used
in the other d−1 dimensions). This definition minimizes
the effects of surface terms and has the value Σ = 0 if the
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two ends of the sample are “decoupled”, with the effect
of the boundary conditions penetrating only a finite dis-
tance into the sample. The value Σ will be zero with high
probability in the paramagnetic phase, for large samples,
and is expected to scale as Ld−1 in the ferromagnetic
phase, for fixed h.

A. Stiffness at criticality

The sample averaged stiffness Σ is a quantity that is
useful for investigating scaling and the order of the transi-
tion. Near a second order transition, the average stiffness
scales with a characteristic scale Lθ, where θ is the “vio-
lation of hyperscaling” or stiffness exponent. The natural
scaling assumption is that this stiffness varies over a scale
given by the reduced disorder, giving

Σ ≈ CLθS[L1/ν(h − hc)K], (10)

with C and K nonuniversal constants and S a function
dependent on the shape of the sample. Another charac-
terization of the distribution of stiffness over samples is
P0(h, L), which is the probability that the stiffness will
be exactly zero. As the distribution of the stiffness can
be scaled at the critical point, with Σ = 0 invariant under
rescaling of Σ by Lθ, P0(hc, L) approaches a constant as
L → ∞, with the asymptotic value set by sample shape,
disorder distribution, and lattice type. This convergence
to a constant was used in Ref. 16 to locate hc for the 3D
RFIM.

The probability of zero stiffness P0 is plotted in Fig. 8,
for samples of shape 3L × L3. Less anisotropic samples
had a very small value of P0 and therefore had more
statistical error. As the running time for a given L is
larger and the ground states for four different boundary
conditions were computed, fewer samples were studied
here than in the magnetization and energy study. For
L = 32, up to 5× 103 realizations were studied, while for
the smallest samples, EJ was calculated for about 5×104

samples. The estimates plotted are consistent with P0

approximately constant in L for hc ≈ 4.18. This is in
accord with other estimates of hc, though the uncertainty
in using this plot to determine hc is somewhat larger than
from other methods.

A scaling plot showing the collapse of the stiffness cal-
culations for samples of the same shape, 3L×L3, is shown
in Fig. 9. Assuming the scaling form Eq. (10), a collapse
to a single function should be found when plotting ΣL−θ

as a function of (h − hc)L
1/ν . This collapse is unrea-

sonably good (that is, is not too bad for L = 6), using
hc = 4.177, θ = 1.82 and ν = 0.80. The computations
strongly support the picture of a second order transition
with a value for θ obeying the bounds18,19,20

d/2 − β/ν ≤ θ ≤ d/2. (11)

When d = 3, it has not been possible to determine
whether θ 6= d/2, given that β/ν is so small. Here, given
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h = 4.17
h = 4.18
h = 4.20

FIG. 8: Plot of the probability of zero stiffness Σ. The
samples have a cross section volume of L3 with a distance of
3L between the controlled faces. The probability is constant
to within numerical errors for h ≈ 4.18.
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3
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c
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FIG. 9: Scaling plot for the stiffness. The samples have
a cross section volume of L3 with a distance of 3L between
the controlled faces. The scaled stiffness ΣL−θ is plotted vs.
the scaled disorder (h − hc)L

1/ν for the values θ = 1.82 and
ν = 0.80.

the larger value of β/ν, it is possible to discriminate be-
tween θ and d/2, with the result suggesting that θ < d/2
(in addition, the result is consistent with saturation of
the lower bound.)

B. Domain walls

The calculations for the set of boundary conditions
++, −−, +−, and −+ on the two opposite controlled
faces (separated by 3L) have also been used to study
the domain walls in the 4D RFIM. Following the defi-
nitions of Ref. 16, three definitions of the domain wall
are considered. The first is found by comparing ++ and
+− boundary conditions, with the spins fixed to be +
on the left end in both cases. The set of spins which is
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connected to the left end and fixed under both sets of
boundary conditions has an internal boundary that in-
tersects Ws bonds. Assuming scaling at hc, the surface
measure scales as

W s ∼ Lds , (12)

defining the domain-wall dimension ds. The next
domain-wall measure exponent is found by comparing
the +− configuration with the −− and ++ configura-
tions. The number of bonds which are unsatisfied only
with +− boundary conditions gives a domain wall mea-
sure WI . Under −− and ++ boundary conditions, there
are unsatisfied bonds due to frozen spin regions, where
the random field is strong enough to fix the spins under
all boundary conditions. The unsatisfied bonds with ei-
ther of these two boundary conditions are not counted as
part of the +− domain wall under this definition. The
only broken bonds which are counted as part of WI are
those broken due to the twisted boundary conditions.
This measure similarly defines an incommensurate sur-
face exponent by

W I ∼ LdI . (13)

The third definition of the effect of boundary conditions
is given by the bond or exchange part of the stiffness,

ΣJ = (EJ
+− + EJ

−+ − EJ
++ − EJ

−−)/2, (14)

where EJ = J
∑

〈ij〉 sisj . This count includes some bro-

ken bonds with negative sign and is influenced by frozen
islands. The “dimension” dJ is then

ΣJ ∼ LdJ . (15)

As ΣJ is the derivative of Σ with respect to J , thermo-
dynamic relations16 imply that

dJ = θ +
1

ν
. (16)

The values of ds, dI and dJ were estimated by taking
the discrete logarithmic derivatives of W s, W I and ΣJ ,

ds,I,J(
√

L1L2) = ln[W (L2)/W (L1)]/ ln(L2/L1), (17)

with W being one of the measures of the domain wall.
The results are plotted in Fig. 10.

One of the more striking differences between the 3D
and 4D calculations is that, while ds 6= d in 3D, when
d = 4 the value of ds is consistent with the relation

ds = d. (18)

Thus, the domain wall defined by the surface of connected
fixed spins anchored at the fixed end of the sample has
dimension consistent with the spatial dimension. This
surface, the internal boundary between flipped and fixed
spins, appears to be space-filling. Additionally, the esti-
mated value of dI = 3.20±0.12 is clearly distinct from ds,
in contrast with the near equality seen in 3D.16 These dif-
ferences will be addressed in more detail in Sec. VI, when
examining the frozen spins for h < hc.

3.8

4.0

4.2

d s(h
,L

)

h
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4.15
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4.18
4.20
4.22
4.25

2.0

3.0

4.0

d I(h
,L

)

10 20 305
L
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d J(h
,L

)
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FIG. 10: Estimate of the dimensions (a) ds, (b) dI , and (c)
dJ obtained from the discrete logarithmic derivatives of wall
area W s, the number of bonds W I created by twisted BC’s
relative to uniform sign BC’s, and the exchange stiffness ΣJ

with respect to L for several h. These plots are used to infer
ds = 3.94 ± 0.06, dI = 3.20 ± 0.12 and dJ = 2.94 ± 0.12.

C. Domain walls and scaling

The value computed here for dJ , dJ = 2.94 ± 0.12,
is just consistent with Eq. (16). As the derivation of
Eq. (16) is quite robust, this consistency should not be
surprising. Though the arguments are apparently sound,
the conjecture made originally for 3D,16 namely that

dI = dJ + β/ν, (19)
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has a non-rigorous derivation, especially as in the above
form, ds in the original version has been replaced by
dI , which here more clearly reflects the measure of the
domain walls induced by boundary condition changes.
However, this scaling relation is easily consistent with
the computed values of the domain wall exponents and
β/ν.

The value found here for (α − 1)/ν also satisfies the
relationship dI − d − β/ν = (α − 1)/ν, which was used
in Ref. 16, except for the replacement here of ds by dI ,
motivated in the 4D RFIM by the more natural defini-
tion of domain walls using dI and the spatial structure
of frozen spins.

VI. FROZEN AND MINORITY SPINS

The result that one measure of the domain wall dimen-
sion, ds, is near to the spatial dimension d suggests that
the picture of the spin configurations must differ between
the cases d = 3 and d = 4. The picture of the configu-
ration at the transition in d = 3 described in Ref. 16 is
that of nested domain walls, where the domain walls are
the boundaries separating connected sets of spins of the
same sign (see also Ref. 19.) In this section, results are
presented that necessitate a different picture in d = 4,
due to the percolation of minority spins for h less than
the critical disorder hc. (These results should be com-
pared with those for the 3D RFIM presented in Ref. 28,
which support the existence of two interpenetrating span-
ning domains in the 3D RFIM for h > hc, and those of
Ref. 29, where the surprising claim is made that there is
a second critical hp > hc where there is first simultaneous
spanning by up and down spin clusters.) The percolation
of minority spins in d = 4 for h < hc makes the identi-
fication of domain walls with connected sets of uniform
spins problematic.

Given a disorder realization {hi}, there are two natural
sets of spins to consider when defining domain walls and
percolation clusters. The minority spins are simply those
that have spin opposite to the mean magnetization. The
fraction of spins that fall into this category is (1−|m|)/2.
Frozen spins are those that are invariant under all bound-
ary conditions. These spins are minority spins under ei-
ther all up or all down boundary conditions, so that the
fraction of frozen spins is 1 − |m|, when L ≫ ξ. If either
minority or frozen spins were distributed independently
in space, the clustering of these spins would map directly
onto simple percolation. As there are strong interactions
between these spins and the boundaries between them
are related to domain walls, the percolation is not sim-
ple, on short length scales. For h < hc, the correlations
should vanish in the limit of separations much greater
than ξ.

The clustering and percolation behavior of these spins
can be directly studied to learn more about the do-
main walls. From ground state configurations for L = 8
through L = 64, computed both for all up and all down

boundary spins, the frozen and minority spin sets were
identified. These sets can be studied directly or in a
coarse grained sense. (Coarse grained spin blocks were
determined by whether the minority or frozen spins were
a majority of the block, with ties randomly broken.) The
spanning clusters were defined as those that connected
two opposite faces of the hypercubic sample.

Fig. 11 is a plot of the percolation probability pb (i.e.,
the probability of at least one spanning cluster) of minor-
ity spins on scales b = 1, 2, 4 as a function of h. From this
plot, an extrapolation of the curve crossings to large L
suggests that the minority spins percolate in the infinite-
volume limit at hm

p = 3.850± 0.005. Plots for the frozen
spins are qualitatively similar, with a lower percolation
threshold of hf

p = 3.680±0.005. In each case, the number

of spanning clusters peaks near hm,f
p , with the peak num-

ber increasing with L. The percolation point tends to-
ward hc as the scale b increases, consistent with a scaling
toward the ferromagnetic state of uniform magnetization
for h < hc.

Implications for the simple domain wall picture in
d = 4 follow directly. As the minority spins percolate
in the ferromagnetic phase, h < hc, the boundaries of
connected sets of same-sign spins are space filling. The
definition of domain walls using simply these connected
sets is thus not clearly informative about the effect of
boundary condition changes. The surfaces defined by the
incongruent bonds are more useful in understanding the
domain walls. These are the surfaces that separate the
two ferromagnetic ground states; the frozen spins make a
space-filling background that is common to both states,
even for h < hc. (In three dimensions, at h = hc, there is
a fractal set of spins that can be controlled by the bound-
ary conditions.) In addition, the relationship in 3D be-
tween β/ν and ρ∞, the probability of crossing a domain
wall per factor of e in length scale, would be much more
difficult to investigate in 4D, as the domain walls are not
readily identifiable.

VII. STATES

In earlier sections, it has been (sometimes implicitly)
assumed that the transition in the 4D RFIM is consis-
tent with the simple picture of a ferromagnetic to para-
magnetic transition, with the sign of the magnetization
in the ferromagnetic state dependent on boundary condi-
tions and the spin configuration independent of boundary
condition in the paramagnetic state, far from the bound-
aries. This assumption is examined in this section. The
approach is inspired in large part by analytic work.30,31

A discussion of the numerical study of the nature of the
thermodynamic states is presented in Ref. 21 and the ap-
plications to the 3D RFIM can be found in Ref. 16. In
summary, one test of the number of states in the thermo-
dynamic limit is to determine the correlation functions
(in this case, the ground state) in the interior of the sam-
ple under several different boundary conditions. For a
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FIG. 11: Plot of the percolation probability for minority spins
as a function of disorder strength h, for L = 8, 16, 32, 64. The
dashed line indicates h = hc. (a) Percolation probability p1

for minority spins. The percolation probability approaches
unity for large systems for hf

p = 3.875 ± 0.005. (b) Percola-
tion probability p2 for minority block spins of size 24. The
percolation threshold is closer to hc. (c) Percolation proba-
bility p4 for minority block spins of size 44.

small number (one or two for Ising models) of thermo-
dynamic limits, there will be a small number of interior
configurations. The probability that the interior of the
ground states will differ from one of the large volume
limit configurations decreases as a power law dependent
on the dimension of the domain wall.

The degeneracy of the ground state was directly ad-
dressed for the 4D RFIM by studying the effect of chang-
ing boundary conditions on the ground state spin config-

uration in the interior of the sample. In particular, the
periodic (P ), all spins up (+), all spins down (−), and
open (O) boundary conditions were compared. As the
4D computations are much more time consuming, the
comparison between the ground states of a system and a
smaller subsystem, each with open boundary conditions,
was not extensively studied, as it was in the 3D RFIM.

A summary of the results for comparisons between P
and +/− is presented in Figs. 12 and 13. The results for
O vs. +/− are quite similar. The plots show the (scaled)
probability PP,+−(2, h, L), for a given h and L, that the
ground-state P configuration is distinct from both the
ground-state + and − configurations in the central vol-
ume of size 24. As L increases, this probability decreases
toward zero at all h. This suggests that in large sam-
ples, the interior configuration for a number of boundary
conditions (including periodic and open) can be found by
imposing either + or − boundary conditions. It was also
found, as in the 3D case, that for h > hc, as L increases,
the interior configurations for the + and − boundary con-
ditions become identical with unit probability. Together,
assuming the extrapolation to large L is correct, these
results show the existence of a single state for h > hc

(for if the interior configuration differs between any two
boundary conditions, it must differ between + and −)
and strongly suggest the existence of only two states for
h < hc.

The scaling of PP,+− is consistent with previous work
on disordered models.21,32 As a function of the scaled dis-
order (h−hc)L

1/ν , the function approaches a single curve
when the probability PP,+− is scaled by Ld−dI . This scal-
ing results from assuming that the number of large (size
L) domain walls induced by generic boundary condition
changes is constant as L → ∞. This assumption is con-
sistent with the observation that dI > d− 1. The chance
that an interior volume of fixed linear size w intersects
a domain wall is expected to behave as (w/L)d−dI . The
clean collapse of the data for larger system sizes, using
values determined from magnetization and domain wall
measurements, lend quantitative support to this picture.

The dimension dI could be alternatively deduced from
this data. Fig. 14 shows the dependence of the peak value
of PP,+− on L. Assuming d−dI gives this slope, the data
for L = 12 → 44 gives dI = 3.19(2). This value could be
taken as the best one for dI , but this is not done here and
is instead used as a confirmation of the scaling picture.

VIII. ALGORITHMIC SLOWING DOWN

In the 3D RFIM, it was found that the number of oper-
ations carried out by the ground state algorithm diverged
near the ferromagnetic-paramagnetic transition. In this
section, similar results are presented for the 4D RFIM.
The scaling results here have greater accuracy near the
transition. The scaling is found to be quite consistent
with the heuristic picture presented in Ref. 33.

The key quantitative relation to be elucidated is that
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sample size L and disorder h, the ground state with periodic
boundary conditions will differ from ground state configura-
tions for both fixed + and − boundary conditions, in a volume
of size 24 in the center of the volume L4. Note that extrap-
olating to L → ∞ suggests that PP,+−

(2, h, L) → 0 for all h.
The solid lines are least-squares fits to quartics in ln(P ).
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FIG. 13: Scaling plot for PP,+−
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1/ν , with
values dI = 3.2 and ν = 0.8. The scaling collapse suggests
that the changes in boundary conditions typically introduce a
finite number of domain walls (say, one of size L) with ∼ LdI

bonds at h = hc.

between the number of primitive operations carried out
to find the ground state and the physical understand-
ing of the phase transition and correlation volumes. In
Ref. 33, it was argued that the time per spin to find the
ground state in the RFIM is directly proportional to the
linear size L near the transition. This results from the
nature of the push-relabel algorithm16,34 used, which ef-
ficiently constructs a “height” field over the lattice that
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FIG. 14: Plot of the dependence of the maximum of
PP,+−

(2, h, L) over h on the system size L. The solid line

is a fit to Pmax
P,+−

∼ L−(d−dI ), with d − dI = 0.81 ± 0.02.
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FIG. 15: (a) Plot of the number of relabel operations per spin,
r, carried out by the ground state algorithm as a function of h,
for L = 4 . . . 64. (b) Plot of the sample-to-sample fluctuations
σr in the number of relabel operations per spin. This quantity
provides an especially sharp and quickly diverging curve for
estimating hc.
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FIG. 16: Linear plot of the height of the peak rp(L) in r vs.
h. The value of rp scales almost exactly linearly with L.

guides the “flow” (corresponding to the redistribution of
excess “fluid” or external magnetic field hi.)

The relabel operation is one of the primitive operations
carried out during the convergence of the algorithm to the
physical ground state. In Fig. 15, the sample average r of
the number of relabel operations per spin and the sample-
to-sample fluctuations in r, σr, are plotted as a function
of h for different L. (Results for the number of the other
primitive operations, the push operations, are quite sim-
ilar.) There is clearly a peak in both quantities near
hc, with the peak in the sample-to-sample fluctuations
being more sharply peaked, relative to the non-critical
contribution35.

The r(h) curves were fit with fourth-order polynomials
to extract the peak value rp(L). The plot of this quan-
tity is shown in Fig. 16. A linear fit is shown, which is
remarkably consistent with the data over a wide range
of L. The result is in agreement with the arguments of

Ref. 33 and supports the relationship between the physi-
cal correlation length and the evolution of the algorithm.

IX. SUMMARY

By computing the ground state for a large number of
samples of volume up to L4 = 644, the quantitative and
qualitative thermodynamic properties of the 4D RFIM
have been studied. The derived exponents satisfy the
conventional scaling relations. The values of the expo-
nents and location of the transition are consistent with,
but are based on larger systems than, the results for the
Gaussian 4D RFIM published in Refs. 11,25. Note that,
as in previous work, the value for ν is the least certain
and that errors in ν propagate to estimates of β and α.
The picture of a single transition from a nearly-two-fold-
degenerate ferromagnetic state to a single paramagnetic
state is confirmed by comparing ground states with vary-
ing boundary conditions. Strong evidence is presented
that the picture of domain walls developed16 for the 3D
RFIM must be modified to describe the 4D RFIM. In
particular, the percolation of frozen and minority spins
within the ferromagnetic phase implies that the sets of
connected same-sign spins are not the boundaries of do-
main walls. The empirical running times for the ground
state algorithm peak near the phase transition in a man-
ner consistent with previous descriptions,16,33 with the
peak running time per spin apparently proportional to
the linear system size. The algorithmic running times
provide a check on the location of the transition and the
scaling exponent ν.
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