13 research outputs found

    A High Stability Optical Shadow Sensor with Applications for Precision Accelerometers

    Get PDF
    Gravimeters are devices which measure changes in the value of the gravitational acceleration, \textit{g}. This information is used to infer changes in density under the ground allowing the detection of subsurface voids; mineral, oil and gas reserves; and even the detection of the precursors of volcanic eruptions. A micro-electro mechanical system (MEMS) gravimeter has been fabricated completely in silicon allowing the possibility of cost e-effective, lightweight and small gravimeters. To obtain a measurement of gravity, a highly stable displacement measurement of the MEMS is required. This requires the development of a portable electronics system that has a displacement sensitivity of ≤2.5\leq 2.5 nm over a period of a day or more. The portable electronics system presented here has a displacement sensitivity ≤10\leq 10 nm/Hz/\sqrt{\textrm{Hz}} (≤0.6\leq 0.6 nm at 10001000 s). The battery power system used a modulated LED for measurements and required temperature control of the system to ±\pm 2 mK, monitoring of the tilt to ±\pm 2 μ\muradians, the storage of measured data and the transmission of the data to an external server.Comment: 8 Pages, 12 figures, 5 equations, currently submitted and under review at IEEE Sensors SIE

    Field tests of a portable MEMS gravimeter

    Get PDF
    Gravimeters are used to measure density anomalies under the ground. They are applied in many different fields from volcanology to oil and gas exploration, but present commercial systems are costly and massive. A new type of gravity sensor has been developed that utilises the same fabrication methods as those used to make mobile phone accelerometers. In this study, we describe the first results of a field-portable microelectromechanical system (MEMS) gravimeter. The stability of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard deviation of 5.58 × 10−6 ms−2 . It is then demonstrated that a change in gravitational acceleration of 4.5 × 10−5 ms−2 can be measured as the device is moved between the top and the bottom of a 20.7 m lift shaft with a signal-to-noise ratio (SNR) of 14.25. Finally, the device is demonstrated to be stable in a more harsh environment: a 4.5 × 10−4 ms−2 gravity variation is measured between the top and bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards a chip-sized gravity senso

    Microelectromechanical system gravimeters as a new tool for gravity imaging

    Get PDF
    A microelectromechanical system (MEMS) gravimeter has been manufactured with a sensitivity of 40 ppb in an integration time of 1 s. This sensor has been used to measure the Earth tides: the elastic deformation of the globe due to tidal forces. No such measurement has been demonstrated before now with a MEMS gravimeter. Since this measurement, the gravimeter has been miniaturized and tested in the field. Measurements of the free-air and Bouguer effects have been demonstrated by monitoring the change in gravitational acceleration measured while going up and down a lift shaft of 20.7 m, and up and down a local hill of 275 m. These tests demonstrate that the device has the potential to be a useful field-portable instrument. The development of an even smaller device is underway, with a total package size similar to that of a smartphone

    MEMS Gradiometers for Attitude Determination on CubeSats

    Get PDF
    This paper presents the design, fabrication and testing of a new high sensitivity gravity sensor for attitude determination in CubeSats. The project is a collaboration between the Institute for Gravitational Research at the University of Glasgow and Ã…AC-Clyde. The gravitational gradiometer takes advantages of the technology of microelectromechanical systems (MEMS) and determines the attitude of the satellite by a differential gravity measurement, the principle at the base of gravitational gradiometry. The capacitive readout allows to measure the rotation of the MEMS gradiometer and consequently evaluate the angle changes of the CubeSat. The developed geometry consists of two symmetrical masses connected to a fixed support by four thin flexure hinges. The all-Silicon sensor resonates at a frequency of 6 Hz, and has a total mass of less than 2 g. It is expected that the sensor geometry and the readout demonstrated would be suitable to achieve the performances required from CubeSat systems and detect a rotation of the small satellite of 1 degree, in order to offer performance comparable to other state-of-the-art sensors currently available on the market

    A MEMS gravimeter with multi-axis gravitational sensitivity

    Get PDF
    A single-axis Microelectromechanical system gravimeter has recently been developed at the University of Glasgow. The sensitivity and stability of this device was demonstrated by measuring the Earth tides. The success of this device was enabled in part by its extremely low resonant frequency. This low frequency was achieved with a geometric anti-spring design, fabricated using well-established photolithography and dry etch techniques. Analytical models can be used to calculate the results of these non-linear oscillating systems, but the power of finite element analysis has not been fully utilised to explore the parameter space before now. In this article, the results of previous analytical solutions are replicated using finite element models, before applying the same techniques to optimise the design of the gravimeter. These computer models provide the ability to investigate the effect of the fabrication material of the device: anisotropic <100> crystalline silicon. This is a parameter that is difficult to investigate analytically, but finite element modelling is demonstrated here to provide accurate predictions of real gravimeter behaviour by taking anisotropy into account. The finite element models are then used to demonstrate the design of a three-axis gravimeter enabling the gravity tensor to be measured - a significantly more powerful surveying tool than the original single-axis device

    A Nineteen Day Earth Tide Measurement with a MEMS Gravimeter

    Get PDF
    The measurement of tiny variations in local gravity enables the observation of subterranean features. Gravimeters have historically been extremely expensive instruments, but usable gravity measurements have recently been conducted using MEMS (microelectromechanical systems) sensors. Such sensors are cheap to produce, since they rely on the same fabrication techniques used to produce mobile phone accelerometers. A significant challenge in the development of MEMS gravimeters is maintaining stability over long time periods, which is essential for long term monitoring applications. A standard way to demonstrate gravimeter stability and sensitivity is to measure the periodic elastic distortion of the Earth due to tidal forces - the Earth tides. Here we present a nineteen day measurement of the Earth tides, with a correlation coefficient to the theoretical signal of 0.979. The estimated bias instability of the proposed gravimeter is 8.18 microGal for an averaging time of ~400 s when considering the raw, uncompensated data. The bias instability extracted from the sensor electronic noise sits just under 2 mircoGal for an averaging time of ~200 s. After removing the long-term temperature and control electronics effects from the raw data, a linear drift of 268 microGal/day is observed in the data, which is among one of the best reported for a MEMS device. These results demonstrate that this MEMS gravimeter is capable of conducting long-therm time-lapse gravimetry, a functionality essential for applications such as volcanology

    5-Hydroxytryptamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    oai:ojs.pkp.sfu.ca:article/31555-HT receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-HT receptors [194] and subsequently revised [176]) are, with the exception of the ionotropic 5-HT3 class, GPCRs where the endogenous agonist is 5-hydroxytryptamine. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology [40, 482]. Most 5-HT receptors (except 5-ht1e and 5-ht5b) play specific roles mediating functional responses in different tissues (reviewed by [463, 382])

    5-Hydroxytryptamine receptors in GtoPdb v.2023.1

    Get PDF
    5-HT receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-HT receptors [198] and subsequently revised [180]) are, with the exception of the ionotropic 5-HT3 class, GPCRs where the endogenous agonist is 5-hydroxytryptamine. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology [40, 491]. Most 5-HT receptors (except 5-ht1e and 5-ht5b) play specific roles mediating functional responses in different tissues (reviewed by [471, 387])

    A 19 day earth tide measurement with a MEMS gravimeter

    Get PDF
    The measurement of tiny variations in local gravity enables the observation of subterranean features. Gravimeters have historically been extremely expensive instruments, but usable gravity measurements have recently been conducted using MEMS (microelectromechanical systems) sensors. Such sensors are cheap to produce, since they rely on the same fabrication techniques used to produce mobile phone accelerometers. A significant challenge in the development of MEMS gravimeters is maintaining stability over long time periods, which is essential for long term monitoring applications. A standard way to demonstrate gravimeter stability and sensitivity is to measure the periodic elastic distortion of the Earth due to tidal forces—the Earth tides. Here, a 19 day measurement of the Earth tides, with a correlation coefficient to the theoretical signal of 0.975, has been presented. This result demonstrates that this MEMS gravimeter is capable of conducting long-term time-lapse gravimetry, a functionality essential for applications such as volcanology
    corecore