13 research outputs found

    Genome-wide Scan Identifies Role for AOX1 in Prostate Cancer Survival

    No full text
    We performed genome-wide association studies and found single nucleotide polymorphisms (SNPs) at seven independent loci associated with prostate-cancer-specific survival time. Two SNPs replicated in an independent cohort. The SNP rs73055188 at AOX1 is associated with AOX1 gene expression level, which is correlated with biochemical recurrence

    Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk

    No full text
    <div><p>The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance–a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in <i>USP45</i> (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in <i>ARID1A</i> (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.</p></div

    Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer

    No full text
    Prostate-specific antigen (PSA) levels have been used for detection and surveillance of prostate cancer (PCa). However, factors other than PCa - such as genetics - can impact PSA. Here we present findings from a genome-wide association study (GWAS) of PSA in 28,503 Kaiser Permanente whites and 17,428 men from replication cohorts. We detect 40 genome-wide significant (P<5 × 10-8) single-nucleotide polymorphisms (SNPs): 19 novel, 15 previously identified for PSA (14 of which were also PCa-associated), and 6 previously identified for PCa only. Further analysis incorporating PCa cases suggests that at least half of the 40 SNPs are PSA-associated independent of PCa. The 40 SNPs explain 9.5% of PSA variation in non-Hispanic whites, and the remaining GWAS SNPs explain an additional 31.7%; this percentage is higher in younger men, supporting the genetic basis of PSA levels. These findings provide important information about genetic markers for PSA that may improve PCa screening, thereby reducing over-diagnosis and over-treatment

    Adequacy of the gamma distribution.

    No full text
    <p>The gamma distribution provides an adequate fit for multiple types of pedigrees. For example, HRP UT-549917 has <i>k</i> = 4.4 and <i>σ</i> = 3.6 with good visual density (a) and CDF (b) fit, with <i>λ</i> = 0.9. (Goodness of fit was estimated with <i>λ</i>, the median of empirical chi-squared distribution divided by the median of the expected chi-squared distribution.) HRP UT-34955 has <i>k</i> = 2.8 and <i>σ</i> = 2.9 with good visual density (c) and CDF (d) fit, with <i>λ</i> = 1.0.</p

    Adequacy of the gamma distribution.

    No full text
    <p>The gamma distribution provides an adequate fit for multiple types of pedigrees. For example, HRP UT-549917 has <i>k</i> = 4.4 and <i>σ</i> = 3.6 with good visual density (a) and CDF (b) fit, with <i>λ</i> = 0.9. (Goodness of fit was estimated with <i>λ</i>, the median of empirical chi-squared distribution divided by the median of the expected chi-squared distribution.) HRP UT-34955 has <i>k</i> = 2.8 and <i>σ</i> = 2.9 with good visual density (c) and CDF (d) fit, with <i>λ</i> = 1.0.</p

    Significant SGS, pedigrees, and segregating SNVs.

    No full text
    <p>In pedigrees, MM cases are fully shaded and MGUS cases are half shaded. Numbers indicate multiple individuals. a) Utah pedigree, 571744, sharing the genome-wide significant SGS. The pedigree is trimmed to allow for viewing (37 MM confirmed cases are known in this pedigree, 3 were ascertained and genotyped). + indicates the genotyped MM cases that are SGS carriers, − indicates genotyped and non-carriers, no carrier status indicates not genotyped. Note–the genealogy extends beyond SEER cancer registry data. MGUS status is unknown in this pedigree. b) Genomic region of significant SGS. c) INSERM pedigree carrying the stop gain SNV marked by “c” in box e. 1 MM and 2 MGUSs carry the SNV. d) Mayo Clinic pedigree carrying the missense SNV marked by “d” in box e. 1 MM and 1 MGUS carry the SNV, but 2 unaffected siblings do not carry the SNV. e) Risk candidate gene, <i>USP45</i>, has 2 segregating SNVs in the ubiquitin C-terminal hydrolase 2 (UCH) domain.</p

    SGS with multiple lines of evidence.

    No full text
    <p>a/b) Utah pedigrees carrying the overlapping SGSs on chr1p36.11-p35.1. + indicates the genotyped MM cases that are SGS carriers, − indicates genotyped and non-carriers, no carrier status indicates not genotyped. c) Weill Cornell pedigree with a segregating, missense SNV in <i>ARID1A</i> indicated by “c” in box e. d) Genomic region of overlapping SGS. Dark black genes fall in both regions. e) 2 rare and segregating, missense SNVs were observed in whole-exome sequencing. SNV “b” is carried by the cases indicated with + in box b. SNV “c” in carried by the cases in box c.</p
    corecore