247 research outputs found

    On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent

    Get PDF
    Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in ‘top-down’ strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)n+ and (M−nH)n− ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage

    5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19F NMR spectroscopy

    Get PDF
    19F NMR spectroscopy has proved to be a valuable tool to monitor functionally important conformational transitions of nucleic acids. Here, we present a systematic investigation on the application of 5-fluoro pyrimidines to probe DNA and RNA secondary structures. Oligonucleotides with the propensity to adapt secondary structure equilibria were chosen as model systems and analyzed by 1D 19F and 1H NMR spectroscopy. A comparison with the unmodified analogs revealed that the equilibrium characteristics of the bistable DNA and RNA oligonucleotides were hardly affected upon fluorine substitution at C5 of pyrimidines. This observation was in accordance with UV spectroscopic melting experiments which demonstrated that single 5-fluoro substitutions in double helices lead to comparable thermodynamic stabilities. Thus, 5-fluoro pyrimidine labeling of DNA and RNA can be reliably applied for NMR based nucleic acid secondary structure evaluation. Furthermore, we developed a facile synthetic route towards 5-fluoro cytidine phosphoramidites that enables their convenient site-specific incorporation into oligonucleotides by solid-phase synthesi

    An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination

    Get PDF
    Peptide bond formation and peptidyl-tRNA hydrolysis are the two elementary chemical reactions of protein synthesis catalyzed by the ribosomal peptidyl transferase ribozyme. Due to the combined effort of structural and biochemical studies, details of the peptidyl transfer reaction have become increasingly clearer. However, significantly less is known about the molecular events that lead to peptidyl-tRNA hydrolysis at the termination phase of translation. Here we have applied a recently introduced experimental system, which allows the ribosomal peptidyl transferase center (PTC) to be chemically engineered by the introduction of non-natural nucleoside analogs. By this approach single functional group modifications are incorporated, thus allowing their functional contributions in the PTC to be unravelled with improved precision. We show that an intact ribose sugar at the 23S rRNA residue A2602 is crucial for efficient peptidyl-tRNA hydrolysis, while having no apparent functional relevance for transpeptidation. Despite the fact that all investigated active site residues are universally conserved, the removal of the complete nucleobase or the ribose 2′-hydroxyl at A2602, U2585, U2506, A2451 or C2063 has no or only marginal inhibitory effects on the overall rate of peptidyl-tRNA hydrolysis. These findings underscore the exceptional functional importance of the ribose moiety at A2602 for triggering peptide release

    Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451

    Get PDF
    The main enzymatic reaction of the large ribosomal subunit is peptide bond formation. Ribosome crystallography showed that A2451 of 23S rRNA makes the closest approach to the attacking amino group of aminoacyl-tRNA. Mutations of A2451 had relatively small effects on transpeptidation and failed to unequivocally identify the crucial functional group(s). Here, we employed an in vitro reconstitution system for chemical engineering the peptidyl transferase center by introducing non-natural nucleosides at position A2451. This allowed us to investigate the peptidyl transfer reaction performed by a ribosome that contained a modified nucleoside at the active site. The main finding is that ribosomes carrying a 2′-deoxyribose at A2451 showed a compromised peptidyl transferase activity. In variance, adenine base modifications and even the removal of the entire nucleobase at A2451 had only little impact on peptide bond formation, as long as the 2′-hydroxyl was present. This implicates a functional or structural role of the 2′-hydroxyl group at A2451 for transpeptidation

    2′-Methylseleno-modified oligoribonucleotides for X-ray crystallography synthesized by the ACE RNA solid-phase approach

    Get PDF
    Site-specifically modified 2′-methylseleno RNA represents a valuable derivative for phasing of X-ray crystallographic data. Several successful applications in three-dimensional structure determination of nucleic acids, such as the Diels–Alder ribozyme, have relied on this modification. Here, we introduce synthetic routes to 2′-methylseleno phosphoramidite building blocks of all four standard nucleosides, adenosine, cytidine, guanosine and uridine, that are tailored for 2′-O-bis(acetoxyethoxy)methyl (ACE) RNA solid-phase synthesis. We additionally report on their incorporation into oligoribonucleotides including deprotection and purification. The methodological expansion of 2′-methylseleno labeling via ACE RNA chemistry is a major step to make Se-RNA generally accessible and to receive broad dissemination of the Se-approach for crystallographic studies on RNA. Thus far, preparation of 2′-methylseleno-modified oligoribonucleotides has been restricted to the 2′-O-[(triisopropylsilyl)oxy]methyl (TOM) and 2′-O-tert-butyldimethylsilyl (TBDMS) RNA synthesis methods

    Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach

    Get PDF
    Riboswitches are genetic control elements within non-coding regions of mRNA. They consist of a metabolite-sensitive aptamer and an adjoining expression platform. Here, we describe ligand-induced folding of a thiamine pyrophosphate (TPP) responsive riboswitch from Escherichia coli thiM mRNA, using chemically labeled variants. Referring to a recent structure determination of the TPP/aptamer complex, each variant was synthesized with a single 2-aminopurine (AP) nucleobase replacement that was selected to monitor formation of tertiary interactions of a particular region during ligand binding in real time by fluorescence experiments. We have determined the rate constants for conformational adjustment of the individual AP sensors. From the 7-fold differentiation of these constants, it can be deduced that tertiary contacts between the two parallel helical domains (P2/J3-2/P3/L3 and P4/P5/L5) that grip the ligand's ends in two separate pockets, form significantly faster than the function-critical three-way junction with stem P1 fully developed. Based on these data, we characterize the process of ligand binding by an induced fit of the RNA and propose a folding model of the TPP riboswitch aptamer. For the full-length riboswitch domain and for shorter constructs that represent transcriptional intermediates, we have additionally evaluated ligand-induced folding via AP-modified variants and provide insights into the sequential folding pathway that involves a finely balanced equilibrium of secondary structures

    A mini-twister variant and impact of residues/cations on the phosphodiester cleavage of this ribozyme class.

    Get PDF
    Nucleolytic ribozymes catalyze site-specific cleavage of their phosphodiester backbones. A minimal version of the twister ribozyme is reported that lacks the phylogenetically conserved stem P1 while retaining wild-type activity. Atomic mutagenesis revealed that nitrogen atoms N1 and N3 of the adenine-6 at the cleavage site are indispensable for cleavage. By NMR spectroscopy, a pKa value of 5.1 was determined for a 13C2-labeled adenine at this position in the twister ribozyme, which is significantly shifted compared to the pKa of the same adenine in the substrate alone. This finding pinpoints at a potential role for adenine-6 in the catalytic mechanism besides the previously identified invariant guanine-48 and a Mg2+ ion, both of which are directly coordinated to the non-bridging oxygen atoms of the scissile phosphate; for the latter, additional evidence stems from the observation that Mn2+ or Cd2+ accelerated cleavage of phosphorothioate substrates. The relevance of this metal ion binding site is further emphasized by a new 2.6 Å X-ray structure of a 2′-OCH3-U5 modified twister ribozyme
    corecore