16 research outputs found
Challenger les promesses du "Demand Driven MRP" : une approche basée sur la simulation à évÚnements discrets
The main Supply Chain current issues concern the adaptation to unstable environments. Demand Driven Material Requirements Planning (DDMRP) is a recent and promising material management method that is designed to tackle these current issues. The research work details and classifies DDMRP compared to the other material management methods known. The goal of this work is to challenge the main DDMRP promises. This is why a design of experiments was realised on a case study in order to assess MRP II, Kanban and DDMRP behaviours with different variability sources. The DDMRP buffer sizing is a major issue. It was dealt with an optimisation work on a case study. All the contributions were experimented with a DDMRP implementation on a real case. The research work enables several DDMRP advantages to be validated, such as the system adjustment to different variability sources, however this work also allows research perspectives to be underlined.Les principaux enjeux des supply chain dâaujourdâhui concernent lâadaptation aÌ des environnements instables. Demand Driven Material Requirements Planning (DDMRP) est une meÌthode reÌcente et prometteuse de gestion des flux qui a eÌteÌ conçue pour faire face aux probleÌmatiques actuelles. Le travail de recherche reÌaliseÌ deÌtaille et positionne DDMRP par rapport aux autres meÌthodes connues de pilotage de flux. Le but de ce travail est de challenger les principales promesses de DDMRP. Pour cela, un plan dâexpeÌriences a eÌteÌ reÌaliseÌ sur un cas dâeÌtude pour eÌvaluer le comportement de MRP II, Kanban et DDMRP face aÌ diffeÌrentes sources de variabiliteÌ. Le dimensionnement des buffers DDMRP est un sujet majeur pour la meÌthode. Il a eÌteÌ traiteÌ sur un cas dâeÌtude avec un travail dâoptimisation. Toutes les contributions ont eÌteÌ expeÌrimenteÌes avec lâimpleÌmentation de DDMRP sur un cas reÌel. La theÌse permet ainsi de valider certains atouts de DDMRP, tels que lâadaptation du systeÌme aÌ diffeÌrentes formes de variabiliteÌs, mais elle permet eÌgalement de souligner des perspectives majeures de recherche sur ce sujet
Toward an Innovative Risk- and Opportunity- Oriented System for SMEsâ Decision-Makers
International audienceThe COVID-19 crisis has demonstrated numerous weaknesses in Small- and Medium-sized Enterprises (SMEs). Among them, the incapability of top management to make robust strategic decisions in an uncertain environment composed of risks and opportunities, is probably one of the most critical. Unfortunately, such a disrupted context is now the norm. By analyzing the situation, we notice that most of these top management decision-makers use traditional Strategy and Management Accounting methods to make decisions for their business. However, these methods have numerous limits regarding the management of uncertainties. Notably, most of them are deterministic and reactive (i.e., a posteriori analysis) and they often manage risks through pure qualitative approaches. Based on these limitations, this article develops the fundamentals of a first innovative model focused on the management of assets and inspired by Industrial Engineering and Artificial Intelligence risk- and opportunity-oriented tools. The proposed approach intends to support more robust strategic decisions in disrupted contexts. An illustrative case is then developed in order to highlight the potentiality of our approach. Finally, some avenues for future research are exposed regarding the current work which is currently in its infancy.La crise de la COVID-19 a mis en exergue de nombreuses faiblesses dans les entreprises, notamment les petites et moyennes. Parmi ces faiblesses, il en est une symptomatique : lâincapacitĂ© des dĂ©cideurs Ă prendre des dĂ©cisions stratĂ©giques robustes dans un contexte incertain et fortement perturbĂ©. Pourtant, un tel contexte, peuplĂ© de risques et dâopportunitĂ©s, est Ă considĂ©rer comme une nouvelle normalitĂ©. Une analyse plus fine de la situation montre que les responsables dâentreprises utilisent principalement des outils issus de la StratĂ©gie et du ContrĂŽle de Gestion pour soutenir leurs dĂ©cisions. Or, ces outils prĂ©sentent de nombreuses limites telles que leur ancrage dĂ©terministe, leurs analyses ex post, ou encore leur dimension souvent qualitative de la gestion du risque. Le prĂ©sent travail de recherche propose les bases dâun premier modĂšle original centrĂ© sur la gestion des actifs des entreprises et inspirĂ© du GĂ©nie Industriel et de lâIntelligence Artificielle. Ce modĂšle vise Ă mieux apprĂ©hender les risques et les opportunitĂ©s dans les mĂ©canismes de prise de dĂ©cision stratĂ©gique. La proposition est illustrĂ©e sur un cas dâĂ©cole permettant de mettre en perspective son potentiel. Des axes de dĂ©veloppement futurs sont finalement proposĂ©s pour alimenter la suite de ce travail de recherche dĂ©butĂ© rĂ©cemment
Toward an Innovative Risk- and Opportunity- Oriented System for SMEsâ Decision-Makers
International audienceThe COVID-19 crisis has demonstrated numerous weaknesses in Small- and Medium-sized Enterprises (SMEs). Among them, the incapability of top management to make robust strategic decisions in an uncertain environment composed of risks and opportunities, is probably one of the most critical. Unfortunately, such a disrupted context is now the norm. By analyzing the situation, we notice that most of these top management decision-makers use traditional Strategy and Management Accounting methods to make decisions for their business. However, these methods have numerous limits regarding the management of uncertainties. Notably, most of them are deterministic and reactive (i.e., a posteriori analysis) and they often manage risks through pure qualitative approaches. Based on these limitations, this article develops the fundamentals of a first innovative model focused on the management of assets and inspired by Industrial Engineering and Artificial Intelligence risk- and opportunity-oriented tools. The proposed approach intends to support more robust strategic decisions in disrupted contexts. An illustrative case is then developed in order to highlight the potentiality of our approach. Finally, some avenues for future research are exposed regarding the current work which is currently in its infancy.La crise de la COVID-19 a mis en exergue de nombreuses faiblesses dans les entreprises, notamment les petites et moyennes. Parmi ces faiblesses, il en est une symptomatique : lâincapacitĂ© des dĂ©cideurs Ă prendre des dĂ©cisions stratĂ©giques robustes dans un contexte incertain et fortement perturbĂ©. Pourtant, un tel contexte, peuplĂ© de risques et dâopportunitĂ©s, est Ă considĂ©rer comme une nouvelle normalitĂ©. Une analyse plus fine de la situation montre que les responsables dâentreprises utilisent principalement des outils issus de la StratĂ©gie et du ContrĂŽle de Gestion pour soutenir leurs dĂ©cisions. Or, ces outils prĂ©sentent de nombreuses limites telles que leur ancrage dĂ©terministe, leurs analyses ex post, ou encore leur dimension souvent qualitative de la gestion du risque. Le prĂ©sent travail de recherche propose les bases dâun premier modĂšle original centrĂ© sur la gestion des actifs des entreprises et inspirĂ© du GĂ©nie Industriel et de lâIntelligence Artificielle. Ce modĂšle vise Ă mieux apprĂ©hender les risques et les opportunitĂ©s dans les mĂ©canismes de prise de dĂ©cision stratĂ©gique. La proposition est illustrĂ©e sur un cas dâĂ©cole permettant de mettre en perspective son potentiel. Des axes de dĂ©veloppement futurs sont finalement proposĂ©s pour alimenter la suite de ce travail de recherche dĂ©butĂ© rĂ©cemment
Toward an Aggregate Approach for Supporting Adaptive Sales And Operations Planning
International audienceThe Demand-Driven Adaptive Enterprise (DDAE) model introduced by the Demand Driven Institute (DDI) few years ago becomes of prime interest for both scholars and practitioners. This research work is investigating the rarely studied strategic part of this DDAE model called Adaptive Sales and Operations Planning (AS&OP) process. One of the main issues regarding this strategic process is to determine how to model it through product family aggregates. Actually, literature analysis demonstrated that no solution exists to support such a process. This research work intends to solve this issue by designing a first AS&OP model allowing an aggregate reasoning. This proposal has been successfully tested on a illustrative but realistic example
MRP vs. Demand-Driven MRP: Towards an Objective Comparison
International audienceThe Demand-Driven MRP (DDMRP) is a recent method focusing on manufacturing and distribution flows that is supposed to manage uncertainties better than traditional Manufacturing Resources Planning (MRP). Nevertheless, this assertion has never been scientifically demonstrated. In this paper, a case study is investigated in order to objectively and quantitatively compare these two systems. A Discrete-Event Simulation (DES) approach is used to evaluate the impacts on systems behaviours regarding both management methods. The final goal of our work research is to objectivise the reality of the DDMRP benefits
An empirical study of Demand-Driven MRP
International audienceThe Demand-Driven MRP (DDMRP) is a method for managing flows in manufacturingand distribution flows that is supposed to manage uncertainties better than traditional ManufacturingResources Planning (MRP) using some of the principles of pull approaches. In this paper, a casestudyis investigated in order to objectively and quantitatively compare these two systems. ADiscrete-Event Simulation (DES) approach is used to evaluate the impacts on system behaviorsregarding both management methods. Results show insights on the interests of DDMRP
Vers une cartographie de processus explicite pour le modĂšle Demand Driven Adaptive Enterprise
Le congrĂšs a pour titre "L'essor des systĂšmes connectĂ©s dans l'industrie et les services"International audienceCet article prĂ©sente une approche de cartographie de processus appliquĂ©e Ă la mĂ©thodologie Demand Driven Adaptive Enterprise. On constate, lors des dĂ©ploiements rĂ©alisĂ©s par les professionnels, que les cas complexes de dĂ©ploiement nĂ©cessitent dâadapter la mĂ©thode Ă divers degrĂ©s. Il faut notamment prendre en compte la rĂ©alitĂ© physique des ateliers, ainsi que les rĂšgles de gestion spĂ©cifiques. En croisant les principes issus des publications existantes et les retours fournis par des experts, une cartographie complĂšte de la mĂ©thode Demand Driven Adaptive Enterprise a Ă©tĂ© Ă©tablie. Elle fait apparaĂźtre les activitĂ©s et les fonctions nĂ©cessaires et constitue une basepour de futures implantations, mais Ă©galement pour la dĂ©finition dâagendas de recherche partagĂ©s. On remarque en particulier que les possibilitĂ©s dâinterprĂ©tation de la cartographie sont nombreuses. Cela implique que chaque variation de la mĂ©thode doit ĂȘtre Ă son tour cartographiĂ©e et testĂ©e, afin de statuer sur son efficacitĂ© au cas par cas
A process map for the demand driven adaptive enterprise model: towards an explicit cartography
International audienceThe DDMRP demand-driven model is being completed and has evolved towards Demand-Driven Adaptive Enterprise (Smith, Ptak, et Ling 2017), a complete business set of rules, from the strategic level to the execution. But when looking for a standard way to understand and implement how the activities are coordinated a drastic lack of precision can be noticed. Through a series of experts' interviews and the study of existing literature on DDMRP, this paper proposes a cartography of the Demand Driven Adaptive Enterprise processes, aggregated in a map. The objective is to share a first knowledge basis to (i) allow for easier implementations and (ii) identify a precise research agenda on the demand-driven methodology
An empirical study of Demand-Driven MRP
International audienceThe Demand-Driven MRP (DDMRP) is a method for managing flows in manufacturingand distribution flows that is supposed to manage uncertainties better than traditional ManufacturingResources Planning (MRP) using some of the principles of pull approaches. In this paper, a casestudyis investigated in order to objectively and quantitatively compare these two systems. ADiscrete-Event Simulation (DES) approach is used to evaluate the impacts on system behaviorsregarding both management methods. Results show insights on the interests of DDMRP