80 research outputs found

    A joint receiver function and gravity study of crustal structure beneath the incipient Okavango Rift, Botswana

    Get PDF
    Rifting incorporates the fundamental processes concerning the breakup of continental lithosphere and plays a significant role in the formation and evolution of sedimentary basins. In order to decipher the characteristics of rifting at its earliest stage, we conduct the first teleseismic crustal study of one of the world\u27s youngest continental rifts, the Okavango Rift Zone (ORZ), where the magma has not yet breached the surface. Results from receiver function stacking and gravity modeling indicate that the crust/mantle boundary beneath the ORZ is uplifted by 4-5 km, and the initiation of the ORZ is closely related to lithospheric stretching. Possible decompression melting of the subcrustal lithosphere occurs beneath the ORZ, as evidenced by a relatively low upper mantle density based on the gravity modeling

    Thermal Perturbations beneath the Incipient Okavango Rift Zone, Northwest Botswana

    Get PDF
    We used aeromagnetic and gravity data to investigate the thermal structure beneath the incipient Okavango Rift Zone (ORZ) in northwestern Botswana in order to understand its role in strain localization during rift initiation. We used three-dimensional (3-D) inversion of aeromagnetic data to estimate the Curie Point Depth (CPD) and heat flow under the rift and surrounding basement. We also used two-dimensional (2-D) power-density spectrum analysis of gravity data to estimate the Moho depth. Our results reveal shallow CPD values (8-15 km) and high heat flow (60-90 mW m-2) beneath a ∼60 km wide NE-trending zone coincident with major rift-related border faults and the boundary between Proterozoic orogenic belts. This is accompanied by thin crust ( \u3c 30 km) in the northeastern and southwestern parts of the ORZ. Within the Precambrian basement areas, the CPD values are deeper (16-30 km) and the heat flow estimates are lower (30-50 mW m-2), corresponding to thicker crust (∼40-50 km). We interpret the thermal structure under the ORZ as due to upward migration of hot mantle fluids through the lithospheric column that utilized the presence of Precambrian lithospheric shear zones as conduits. These fluids weaken the crust, enhancing rift nucleation. Our interpretation is supported by 2-D forward modeling of gravity data suggesting the presence of a wedge of altered lithospheric mantle centered beneath the ORZ. If our interpretation is correct, it may result in a potential paradigm shift in which strain localization at continental rift initiation could be achieved through fluid-assisted lithospheric weakening without asthenospheric involvement

    Thermal Perturbations beneath the Incipient Okavango Rift Zone, Northwest Botswana

    Get PDF
    We used aeromagnetic and gravity data to investigate the thermal structure beneath the incipient Okavango Rift Zone (ORZ) in northwestern Botswana in order to understand its role in strain localization during rift initiation. We used three-dimensional (3-D) inversion of aeromagnetic data to estimate the Curie Point Depth (CPD) and heat flow under the rift and surrounding basement. We also used two-dimensional (2-D) power-density spectrum analysis of gravity data to estimate the Moho depth. Our results reveal shallow CPD values (8-15 km) and high heat flow (60-90 mW m-2) beneath a ∼60 km wide NE-trending zone coincident with major rift-related border faults and the boundary between Proterozoic orogenic belts. This is accompanied by thin crust ( \u3c 30 km) in the northeastern and southwestern parts of the ORZ. Within the Precambrian basement areas, the CPD values are deeper (16-30 km) and the heat flow estimates are lower (30-50 mW m-2), corresponding to thicker crust (∼40-50 km). We interpret the thermal structure under the ORZ as due to upward migration of hot mantle fluids through the lithospheric column that utilized the presence of Precambrian lithospheric shear zones as conduits. These fluids weaken the crust, enhancing rift nucleation. Our interpretation is supported by 2-D forward modeling of gravity data suggesting the presence of a wedge of altered lithospheric mantle centered beneath the ORZ. If our interpretation is correct, it may result in a potential paradigm shift in which strain localization at continental rift initiation could be achieved through fluid-assisted lithospheric weakening without asthenospheric involvement

    Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    Get PDF
    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold

    Video-calls to reduce loneliness and social isolation within care environments for older people: an implementation study using collaborative action research

    Get PDF
    Background  Older people in care may be lonely with insufficient contact if families are unable to visit. Face-to-face contact through video-calls may help reduce loneliness, but little is known about the processes of engaging people in care environments in using video-calls. We aimed to identify the barriers to and facilitators of implementing video-calls for older people in care environments.  Methods  A collaborative action research (CAR) approach was taken to implement a video-call intervention in care environments. We undertook five steps of recruitment, planning, implementation, reflection and re-evaluation, in seven care homes and one hospital in the UK. The video-call intervention ‘Skype on Wheels’ (SoW) comprised a wheeled device that could hold an iPad and handset, and used Skype to provide a free video-call service. Care staff were collaborators who implemented the intervention within the care-setting by agreeing the intervention, recruiting older people and their family, and setting up video-calls. Field notes and reflective diaries on observations and conversations with staff, older people and family were maintained over 15 months, and analysed using thematic analysis.  Results  Four care homes implemented the intervention. Eight older people with their respective social contacts made use of video-calls. Older people were able to use SoW with assistance from staff, and enjoyed the use of video-calls to stay better connected with family. However five barriers towards implementation included staff turnover, risk averseness, the SoW design, lack of family commitment and staff attitudes regarding technology.  Conclusions  The SoW intervention, or something similar, could aid older people to stay better connected with their families in care environments, but if implemented as part of a rigorous evaluation, then co-production of the intervention at each recruitment site may be needed to overcome barriers and maximise engagement

    APPLICATION OF RESPONSE MATRIX METHOD TO TRANSIENT SIMULATIONS OF NUCLEAR SYSTEMS

    No full text
    Until recently, reactor transient problems were exclusively solved by approximate deterministic methods. The increase in available computing power made it feasible to approach the transient analyses with time-dependent Monte Carlo methods. These methods offer the first-principle solution to the space-time evolution of reactor power by explicitly tracking prompt neutrons, precursors of delayed neutrons and delayed neutrons in time and space. Nevertheless, a very significant computing cost is associated with such methods. The general benefits of the Monte Carlo approach may be retained at a reduced computing cost by applying a hybrid stochastic-deterministic computing scheme. Among such schemes are those based on the fission matrix and the response matrix formalisms. These schemes aim at estimating a variant of the Greens function during a Monte Carlo transport calculation, which is later used to formulate a deterministic approach to solving a space-time dependent problem. In this contribution, we provide an overview of the time-dependent response matrix method, which describes a system by a set of response functions. We have recently suggested an approach where the functions are determined during a Monte Carlo criticality calculation and are then used to deterministically solve the space-time behaviour of the system. Here, we compare the time-dependent response matrix solution with the transient fission matrix and the time-dependent Monte Carlo solutions for a control rod movement problem in a mini-core reactor geometry. The response matrix formalism results in a set of loosely connected equations which offers favourable scaling properties compared to the methods based on the fission matrix formalism

    Geophysical Characterization of the Menengai Volcano, Central Kenya Rift from the Analysis of Magnetotelluric and Gravity Data

    No full text
    In this study, we qualitatively analyze detailed gravity and broadband magnetotelluric data in and surrounding the Menengai volcano of the East African rift in Kenya to assess geothermal potential of the region. Three-dimensional gravity models obtained by inverting residual gravity anomalies and 2D resistivity models obtained by inverting the transverse electric and transverse magnetic magnetotelluric modes show several common features. Our models show that a low-resistivity zone above a higher resistivity zone correlates with a low-density region located 1-4 km beneath the volcano. These zones may be related to a high temperature gradient or hydrothermally altered, fractured rocks. Additionally, a low-resistivity (\u3e20 ohm-m) and a low-density region located approximately 4-6 km below the volcano may be related to molten material that is the source of heat for the geothermal system. The low-resistivity (\u3c20 ohm-m) regions that correlated with a denser (2.8-2.9 g/cc) region within the caldera are bounded by high-resistivity (\u3e250 ohm-m), high-density (\u3e2.9) volcanic units implying that the dense and electrically resistive volcanic material is relatively cool and lacks significant fluid content that can lower resistivity. At shallow depths, 0.5-1.5 km below the caldera, a low-resistivity and low-to-moderate density region is interpreted as a zone with high fracture density that consists of clay minerals resulting from hydrothermal alteration. These results agree well with the results from previous seismic studies on the depth of the suggested molten rocks

    APPLICATION OF RESPONSE MATRIX METHOD TO TRANSIENT SIMULATIONS OF NUCLEAR SYSTEMS

    Get PDF
    Until recently, reactor transient problems were exclusively solved by approximate deterministic methods. The increase in available computing power made it feasible to approach the transient analyses with time-dependent Monte Carlo methods. These methods offer the first-principle solution to the space-time evolution of reactor power by explicitly tracking prompt neutrons, precursors of delayed neutrons and delayed neutrons in time and space. Nevertheless, a very significant computing cost is associated with such methods. The general benefits of the Monte Carlo approach may be retained at a reduced computing cost by applying a hybrid stochastic-deterministic computing scheme. Among such schemes are those based on the fission matrix and the response matrix formalisms. These schemes aim at estimating a variant of the Greens function during a Monte Carlo transport calculation, which is later used to formulate a deterministic approach to solving a space-time dependent problem. In this contribution, we provide an overview of the time-dependent response matrix method, which describes a system by a set of response functions. We have recently suggested an approach where the functions are determined during a Monte Carlo criticality calculation and are then used to deterministically solve the space-time behaviour of the system. Here, we compare the time-dependent response matrix solution with the transient fission matrix and the time-dependent Monte Carlo solutions for a control rod movement problem in a mini-core reactor geometry. The response matrix formalism results in a set of loosely connected equations which offers favourable scaling properties compared to the methods based on the fission matrix formalism
    • …
    corecore