220 research outputs found

    Advances in Animal Welfare Science 1984/85

    Get PDF
    This book, the first in an annual series, written by academicians--scientists, philosopher and other--is not intended exclusively for animal welfarists and conservationists. Since it is written by scholars, it will appeal to a wide range of academic and professional readers who are involved with animals for scientific, economic, altruistic, and other reasons. While this first volume cannot cover the entire spectrum of animal welfare science-related topics, it does, in its diversity of contributions, demonstrate the multi-faceted and interdisciplinary nature of the subject of this new series.https://www.wellbeingintlstudiesrepository.org/ebooks/1019/thumbnail.jp

    Impact of 2000–2050 climate change on fine particulate matter (PM<sub>2.5</sub>) air quality inferred from a multi-model analysis of meteorological modes

    Get PDF
    Studies of the effect of climate change on fine particulate matter (PM<sub>2.5</sub> air quality using general circulation models (GCMs) show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM<sub>2.5</sub>. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21st-century trends in the meteorological modes driving PM<sub>2.5</sub> variability over the contiguous US. We analyze 1999–2010 observations to identify the dominant meteorological modes driving interannual PM<sub>2.5</sub> variability and their synoptic periods T. We find robust correlations (<i>r</i> > 0.5) of annual mean PM<sub>2.5</sub> with T, especially in the eastern US where the dominant modes represent frontal passages. The GCMs all have significant skill in reproducing present-day statistics for T and we show that this reflects their ability to simulate atmospheric baroclinicity. We then use the local PM<sub>2.5</sub>-to-period sensitivity (dPM<sub>2.5</sub>/dT) from the 1999–2010 observations to project PM<sub>2.5</sub> changes from the 2000–2050 changes in T simulated by the 15 GCMs following the SRES A1B greenhouse warming scenario. By weighted-average statistics of GCM results we project a likely 2000–2050 increase of ~ 0.1 μg m<sup>−3</sup> in annual mean PM<sub>2.5</sub> in the eastern US arising from less frequent frontal ventilation, and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM<sub>2.5</sub> may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM<sub>2.5</sub> by more than 0.5 μg m<sup>−3</sup>

    Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    Get PDF
    We investigate the climate response to changing US anthropogenic aerosol sources over the 1950–2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970–1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5–1.0 °C on average during 1970–1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960–1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010–2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980–2010 period

    Regional Warming from Aerosol Removal over the United States: Results from a Transient 2010-2050 Climate Simulation

    Get PDF
    We use a general circulation model (NASA Goddard Institute for Space Studies GCM 3) to investigate the regional climate response to removal of aerosols over the United States. We perform a pair of transient 2010e2050 climate simulations following a scenario of increasing greenhouse gas concentrations, with and without aerosols over the United States and with present-day aerosols elsewhere. We find that removing U.S. aerosol significantly enhances the warming from greenhouse gases in a spatial pattern that strongly correlates with that of the aerosol. Warming is nearly negligible outside the United States, but annual mean surface temperatures increase by 0.4e0.6 K in the eastern United States. Temperatures during summer heat waves in the Northeast rise by as much as 1e2 K due to aerosol removal, driven in part by positive feedbacks involving soil moisture and low cloud cover. Reducing U.S. aerosol sources to achieve air quality objectives could thus have significant unintended regional warming consequences

    Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum

    Get PDF
    The oxidative capacity of past atmospheres is highly uncertain. We present here a new climate–biosphere–chemistry modeling framework to determine oxidant levels in the present and past troposphere. We use the GEOS-Chem chemical transport model driven by meteorological fields from the NASA Goddard Institute of Space Studies (GISS) ModelE, with land cover and fire emissions from dynamic global vegetation models. We present time-slice simulations for the present day, late preindustrial era (AD 1770), and the Last Glacial Maximum (LGM, 19–23 ka), and we test the sensitivity of model results to uncertainty in lightning and fire emissions. We find that most preindustrial and paleo climate simulations yield reduced oxidant levels relative to the present day. Contrary to prior studies, tropospheric mean OH in our ensemble shows little change at the LGM relative to the preindustrial era (0.5 ± 12 %), despite large reductions in methane concentrations. We find a simple linear relationship between tropospheric mean ozone photolysis rates, water vapor, and total emissions of NO<sub>x</sub> and reactive carbon that explains 72 % of the variability in global mean OH in 11 different simulations across the last glacial–interglacial time interval and the industrial era. Key parameters controlling the tropospheric oxidative capacity over glacial–interglacial periods include overhead stratospheric ozone, tropospheric water vapor, and lightning NO<sub>x</sub> emissions. Variability in global mean OH since the LGM is insensitive to fire emissions. Our simulations are broadly consistent with ice-core records of Δ<sup>17</sup>O in sulfate and nitrate at the LGM, and CO, HCHO, and H<sub>2</sub>O<sub>2</sub> in the preindustrial era. Our results imply that the glacial–interglacial changes in atmospheric methane observed in ice cores are predominantly driven by changes in its sources as opposed to its sink with OH

    Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 2: Climate response

    Get PDF
    We investigate the climate response to changing US anthropogenic aerosol sources over the 1950–2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970–1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5–1.0 °C on average during 1970–1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960–1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010–2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980–2010 period

    Insignificant effect of climate change on winter haze pollution in Beijing

    Get PDF
    Several recent studies have suggested that 21st century climate change will significantly worsen the meteorological conditions, leading to very high concentrations of fine particulate matter (PM2.5) in Beijing in winter (Beijing haze). We find that 81&thinsp;% of the variance in observed monthly PM2.5 during 2010–2017 winters can be explained by a single meteorological mode, the first principal component (PC1) of the 850&thinsp;hPa meridional wind velocity (V850) and relative humidity (RH). V850 and RH drive stagnation and chemical production of PM2.5, respectively, and thus have a clear causal link to Beijing haze. PC1 explains more of the variance in PM2.5 than either V850 or RH alone. Using additional meteorological variables does not explain more of the variance in PM2.5. Therefore PC1 can serve as a proxy for Beijing haze in the interpretation of long-term climate records and in future climate projections. Previous studies suggested that shrinking Arctic sea ice would worsen winter haze conditions in eastern China, but we show with the PC1 proxy that Beijing haze is correlated with a dipole structure in the Arctic sea ice rather than with the total amount of sea ice. Beijing haze is also correlated with dipole patterns in Pacific sea surface temperatures (SSTs). We find that these dipole patterns of Arctic sea ice and Pacific SSTs shift and change sign on interdecadal scales, so that they cannot be used reliably as future predictors for the haze. Future 21st century trends of the PC1 haze proxy computed from the CMIP5 ensemble of climate models are statistically insignificant. We conclude that climate change is unlikely to significantly offset current efforts to decrease Beijing haze through emission controls.</p

    Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    Get PDF
    We investigate the climate response to changing US anthropogenic aerosol sources over the 1950–2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970–1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5–1.0 °C on average during 1970–1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960–1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010–2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980–2010 period

    Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols

    Get PDF
    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of 2.0Wm(exp2 for direct forcing including contributions from sulfate (2.0Wm2), nitrate (0.2Wm(exp2), organic carbon (0.2Wm(exp2), and black carbon (+0.4Wm(exp2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp2) direct and 1.0Wm(exp2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit

    Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    Get PDF
    We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period, based on historical emission inventories and future projections from the IPCC A1B scenario. The aerosol simulation is evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that it peaked in 1970–1990, with values over the eastern US (east of 100° W) of −2.0 W m[superscript −2] for direct forcing including contributions from sulfate (−2.0 W m[superscript −2]), nitrate (−0.2 W m[superscript −2]), organic carbon (−0.2 W m[superscript −2]), and black carbon (+0.4 W m[superscript −2]). The aerosol indirect effect is of comparable magnitude to the direct forcing. We find that the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m[superscript −2] indirect), mainly reflecting decreases in SO[subscript 2] emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO[subscript 2] emissions have already declined by almost 60 % from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources may have already been realized by 2010, however some additional warming is expected through 2020. The small positive radiative forcing from US BC emissions (+0.3 W m[superscript −2] over the eastern US in 2010) suggests that an emission control strategy focused on BC would have only limited climate benefit
    • …
    corecore