29 research outputs found

    Effects of Boron Purity, Mg Stoichiometry and Carbon Substitution on Properties of Polycrystalline MgB2_{2}

    Full text link
    By synthesizing MgB2_{2} using boron of different nominal purity we found values of the residual resistivity ratio (RRR=R(300K)/R(42K)RRR = R(300 K) / R(42 K)) from 4 to 20, which covers almost all values found in literature. To obtain high values of RRRRRR, high purity reagents are necessary. With the isotopically pure boron we obtained the highest RRRRRR \sim 20 for the stoichiometric compound. We also investigated Mgx_{x}11^{11}B2_{2} samples with 0.8 <x<< x < 1.2. For the range Mg0.8_{0.8}11^{11}B2_{2} up to Mg1.2_{1.2}11^{11}B2_{2} we found average values of RRRRRR between 14 and 24. For smaller variations in stoichiometry (x=1±0.1x=1\pm 0.1) RRR=18±3RRR = 18 \pm 3. All of our data point to the conclusion that high RRRRRR (20\sim 20) and low ρ0\rho_{0} (0.4μΩcm\leq 0.4 \mu \Omega cm) are intrinsic material properties associated with high purity MgB2_{2}. In addition we have performed initial work on optimizing the formation of carbon doped MgB2_{2} via the use of B4_{4}C. Nearly single phase material can be formed by reaction of nominal Mg(B0.8_{0.8}C0.2_{0.2})2_{2} for 24 hours at 1200C1200^{\circ}C. The TcT_{c} for this composition is between 21.9K21.9 K and 22.7K22.7 K (depending on criterion).Comment: accepted to Physica C, special MgB2 issu

    Carbon doping of superconducting magnesium diboride

    Full text link
    We present details of synthesis optimization and physical properties of nearly single phase carbon doped MgB2 with a nominal stoichiometry of Mg(B{0.8}C{0.2})2 synthesized from magnesium and boron carbide (B4C) as starting materials. The superconducting transition temperature is ~ 22 K (~ 17 K lower than in pure MgB2). The temperature dependence of the upper critical field is steeper than in pure MgB2 with Hc2(10K) ~ 9 T. Temperature dependent specific heat data taken in different applied magnetic fields suggest that the two-gap nature of superconductivity is still preserved for carbon doped MgB2 even with such a heavily suppressed transition temperature. In addition, the anisotropy ratio of the upper critical field for T/Tc ~ 2/3 is gamma ~ 2. This value is distinct from 1 (isotropic) and also distinct from 6 (the value found for pure MgB2).Comment: 11 pages, 13 figures, submitted to Physica

    Retention of Two-Band Superconductivity in Highly Carbon-Doped MgB2

    Full text link
    Tunneling data on MgB_{1.8}C_{0.2} show a reduction in the energy gap of the pi-bands by a factor of two from undoped MgB2 that is consistent with the Tc reduction, but inconsistent with the expectations of the dirty limit. Dirty-limit theory for undoped MgB2 predicts a single gap about three times larger than measured and a reduced Tc comparable to that measured. Our heavily-doped samples exhibit a uniform dispersion of C suggestive of significantly enhanced scattering, and we conclude that the retention of two-band superconductivity in these samples is caused by a selective suppression of interband scattering.Comment: 4 pages, 4 figures; added one figure, added one reference, minor changes to the text, manuscript accepted for publication as a Phys. Rev. B Rapid Communicatio
    corecore