77 research outputs found

    Structure of Polyelectrolytes in Poor Solvent

    Full text link
    We present simulations on charged polymers in poor solvent. First we investigate in detail the dilute concentration range with and without imposed extension constraints. The resulting necklace polymer conformations are analyzed in detail. We find strong fluctuations in the number of pearls and their sizes leading only to small signatures in the form factor and the force-extension relation. The scaling of the peak in the structure factor with the monomer density shows a pertinent different behavior from good solvent chains.Comment: 7 pages, 5 figures. submitted to EP

    The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in Bacillus subtilis

    Get PDF
    The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria

    A Modified Random Phase Approximation of Polyelectrolyte Solutions

    Full text link
    We compute the phase diagram of salt-free polyelectrolyte solutions using a modified Debye-Huckel Approach. We introduce the chain connectivity via the Random Phase Approximation with two important modifications. We modify the electrostatic potential at short distances to include a bound on the electrostatic attractions at the distance of closest approach between charges. This modification is shown to act as a hard core in the phase diagram of electrolyte solutions. We also introduce a cut-off on the integration of the modes of wave length smaller than the size over which the chains are strongly perturbed by the electrostatic interactions. This cut-off is shown to be essential to predict physical phase diagram in long chain solutions

    DNA Clasping by Mycobacterial HU: The C-Terminal Region of HupB Mediates Increased Specificity of DNA Binding

    Get PDF
    BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb) bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb)) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupB(MtbN)). Gel retardation assays revealed that HupB(MtbN) is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (K(d)) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region) of HupB(Mtb) imparts greater specificity in DNA binding. HupB(Mtb) protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb) may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure

    Structure of Metaphase Chromosomes: A Role for Effects of Macromolecular Crowding

    Get PDF
    In metaphase chromosomes, chromatin is compacted to a concentration of several hundred mg/ml by mechanisms which remain elusive. Effects mediated by the ionic environment are considered most frequently because mono- and di-valent cations cause polynucleosome chains to form compact ∼30-nm diameter fibres in vitro, but this conformation is not detected in chromosomes in situ. A further unconsidered factor is predicted to influence the compaction of chromosomes, namely the forces which arise from crowding by macromolecules in the surrounding cytoplasm whose measured concentration is 100–200 mg/ml. To mimic these conditions, chromosomes were released from mitotic CHO cells in solutions containing an inert volume-occupying macromolecule (8 kDa polyethylene glycol, 10.5 kDa dextran, or 70 kDa Ficoll) in 100 µM K-Hepes buffer, with contaminating cations at only low micromolar concentrations. Optical and electron microscopy showed that these chromosomes conserved their characteristic structure and compaction, and their volume varied inversely with the concentration of a crowding macromolecule. They showed a canonical nucleosomal structure and contained the characteristic proteins topoisomerase IIα and the condensin subunit SMC2. These observations, together with evidence that the cytoplasm is crowded in vivo, suggest that macromolecular crowding effects should be considered a significant and perhaps major factor in compacting chromosomes. This model may explain why ∼30-nm fibres characteristic of cation-mediated compaction are not seen in chromosomes in situ. Considering that crowding by cytoplasmic macromolecules maintains the compaction of bacterial chromosomes and has been proposed to form the liquid crystalline chromosomes of dinoflagellates, a crowded environment may be an essential characteristic of all genomes

    Local and global regulation of transcription initiation in bacteria

    Get PDF
    corecore