36 research outputs found
Actin cytoskeleton differently regulates cell surface organization of GPI-anchored proteins in polarized epithelial cells and fibroblasts
The spatiotemporal compartmentalization of membrane-associated glycosylphosphatidylinositol-anchored proteins (GPI-APs) on the cell surface regulates their biological activities. These GPI-APs occupy distinct cellular functions such as enzymes, receptors, and adhesion molecules, and they are implicated in several vital cellular processes. Thus, unraveling the mechanisms and regulators of their membrane organization is essential. In polarized epithelial cells, GPI-APs are enriched at the apical surface, where they form small cholesterol-independent homoclusters and larger heteroclusters accommodating multiple GPI-AP species, all confined within areas of approximately 65â70Â nm in diameter. Notably, GPI-AP homoclustering occurs in the Golgi apparatus through a cholesterol- and calcium-dependent mechanism that drives their apical sorting. Despite the critical role of Golgi GPI-AP clustering in their cell surface organization and the importance of cholesterol in heterocluster formation, the regulatory mechanisms governing GPI-AP surface organization, particularly in the context of epithelial polarity, remain elusive. Given that the actin cytoskeleton undergoes substantial remodeling during polarity establishment, this study explores whether the actin cytoskeleton regulates the spatiotemporal apical organization of GPI-APs in MDCK cells. Utilizing various imaging techniques (number and brightness, FRET/FLIM, and dSTORM coupled to pair correlation analysis), we demonstrate that the apical organization of GPI-APs, at different scales, does not rely on the actin cytoskeleton, unlike in fibroblastic cells. Interestingly, calcium chelation disrupts the organization of GPI-APs at the apical surface by impairing Golgi GPI-AP clustering, emphasizing the existence of an interplay among Golgi clustering, apical sorting, and surface organization in epithelial cells. In summary, our findings unveil distinct mechanisms regulating the organization of GPI-APs in cell types of different origins, plausibly allowing them to adapt to different external signals and different cellular environments in order to achieve specialized functions
Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe
The actin cytoskeleton of dendritic spines plays a key role in morphological aspects of synaptic plasticity. The detailed analysis of the spine structure and dynamics in live neurons, however, has been hampered by the diffraction-limited resolution of conventional fluorescence microscopy. The advent of nanoscopic imaging techniques thus holds great promise for the study of these processes. We implemented a strategy for the visualization of morphological changes of dendritic spines over tens of minutes at a lateral resolution of 25 to 65 nm. We have generated a low-affinity photoconvertible probe, capable of reversibly binding to actin and thus allowing long-term photoactivated localization microscopy of the spine cytoskeleton. Using this approach, we resolve structural parameters of spines and record their long-term dynamics at a temporal resolution below one minute. Furthermore, we have determined changes in the spine morphology in response to pharmacologically induced synaptic activity and quantified the actin redistribution underlying these changes. By combining PALM imaging with quantum dot tracking, we could also simultaneously visualize the cytoskeleton and the spine membrane, allowing us to record complementary information on the morphological changes of the spines at super-resolution
Caractérisation d'impulsions brÚves. Mise en forme temporelle et Spectrale pour une application à l'endomicroscopie bi-photonique
This work first of all relates to two original techniuqes od single shot temporal characterization of short light pulses. A liquid core fibre autocorrelator based on two photon fluorescence is demonstrated. The second method, named SPIRIT is based on spectral interferometry resolved in time. It implements an interferometric stage followed by a non-linear stage of all optical time sampling. A two dimensional evolution of SPIRIT benefiting from spectral and temporal dimensions is also presented.The second part of this work relates to femtosecond pulse delivery with optical fibers for an application to non-linear endomicroscopy. TEmporal and spectral shaping allows the compensation for chromatic dispersion and self phase modulation occuring in the endoscopic fiber that is made of a bundle of thousands of optical fibers. The non-linear endomicrsocope allowed the recording of two photon images of human colon cells for a low average power incident on the biological tissues.Ce travail concerne tout d'abord deux techniques originales de caractérisation monocoup d'impulsions lumineuses brÚves. un autocorrélateur à deux photons à fibre optique à coeur liquide fluorescent est tout d'abord présenté. La seconde méthode, nommée SPIRIT, s'appuie sur l'interférométrie spectrale à décalage résolue temporellement sans référence. Elle met en oeuvre une étape interférométrique suivie d'une étape non-linéaire d'échantillonnage temporel tout optique. Une évolution bi-dimensionnelle de SPIRIT profitant des dimensions spectrale et temporelle et également démontrée.La seconde partie de ce travail concerne une technique d'acheminement d'impulsions femtosecondes énergétiques par fibre optique en vue d'une application à l'endomicroscopie non-linéaire. La mise en forme temporelle et spectrale du signal permet de pré-compenser la dipersion chromatique et l'automodulation de phase se produisant dans la fibre endoscopique constituée d'un faisceau de milliers de fibres optiques. L'endomicroscope non-linéaire a permis l'enregistrement d'images bi-photoniques de cellules de colon humain pour une puissance moyenne faible
Beside FROG and SPIDER, a new single shot fully deterministic approach: SPIRIT
International audienc
Time resolved spectral interferometry for single shot femtosecond characterization
International audienc
Single shot Spectral shearing Interferometry for real time femtosecond pulse field reconstruction
International audienc
Fractional-order Fourier analysis for ultrashort pulse characterization
International audienc