679 research outputs found

    State of the Sub-surface Microstructure of Carbides strengthened cast Superalloys after High Temperature Oxidation -Use of Thermodynamic Modelling for a better Understanding

    Get PDF
    International audienceSeveral cast strengthened superalloys, Ni base and Co base, were exposed to high temperature oxidation for long times and metallographically examined. Different phenomena occurred in the sub-surface microstructure, depending on both alloy and temperature. Thermodynamic modelling was used to know what it happened for carbon during oxidation, then to explain the observed microstructural changes. It appears that carbon atoms either quit the alloy probably after its oxidation into gases, or on the contrary go deeper into the bulk where they promote the precipitation of new carbides by solid state transformation. Thereafter, thermodynamic modelling allowed to know the new local refractoriness of the zones affected by oxidation, then to appreciate the new mechanical properties in the sub-surface

    Predictability alters information flow during action observation in human electrocorticographic activity

    Get PDF
    The action observation network (AON) has been extensively studied using short, isolated motor acts. How activity in the network is altered when these isolated acts are embedded in meaningful sequences of actions remains poorly understood. Here we utilized intracranial electrocorticography to characterize how the exchange of information across key nodes of the AON-the precentral, supramarginal, and visual cortices-is affected by such embedding and the resulting predictability. We found more top-down beta oscillation from precentral to supramarginal contacts during the observation of predictable actions in meaningful sequences compared to the same actions in randomized, and hence less predictable, order. In addition, we find that expectations enabled by the embedding lead to a suppression of bottom-up visual responses in the high-gamma range in visual areas. These results, in line with predictive coding, inform how nodes of the AON integrate information to process the actions of others.</p

    What is the biological basis of pattern formation of skin lesions?

    Get PDF
    Pattern recognition is at the heart of clinical dermatology and dermatopathology. Yet, while every practitioner of the art of dermatological diagnosis recognizes the supreme value of diagnostic cues provided by defined patterns of 'efflorescences', few contemplate on the biological basis of pattern formation in and of skin lesions. Vice versa, developmental and theoretical biologists, who would be best prepared to study skin lesion patterns, are lamentably slow to discover this field as a uniquely instructive testing ground for probing theoretical concepts on pattern generation in the human system. As a result, we have at best scraped the surface of understanding the biological basis of pattern formation of skin lesions, and widely open questions dominate over definitive answer. As a symmetry-breaking force, pattern formation represents one of the most fundamental principles that nature enlists for system organization. Thus, the peculiar and often characteristic arrangements that skin lesions display provide a unique opportunity to reflect upon – and to experimentally dissect – the powerful organizing principles at the crossroads of developmental, skin and theoretical biology, genetics, and clinical dermatology that underlie these – increasingly less enigmatic – phenomena. The current 'Controversies' feature offers a range of different perspectives on how pattern formation of skin lesions can be approached. With this, we hope to encourage more systematic interdisciplinary research efforts geared at unraveling the many unsolved, yet utterly fascinating mysteries of dermatological pattern formation. In short: never a dull pattern

    Wavelets techniques for pointwise anti-Holderian irregularity

    Full text link
    In this paper, we introduce a notion of weak pointwise Holder regularity, starting from the de nition of the pointwise anti-Holder irregularity. Using this concept, a weak spectrum of singularities can be de ned as for the usual pointwise Holder regularity. We build a class of wavelet series satisfying the multifractal formalism and thus show the optimality of the upper bound. We also show that the weak spectrum of singularities is disconnected from the casual one (denoted here strong spectrum of singularities) by exhibiting a multifractal function made of Davenport series whose weak spectrum di ers from the strong one

    Wiedemann-Franz law and abrupt change in conductivity across the pseudogap critical point of a cuprate superconductor

    Full text link
    The thermal conductivity κ\kappa of the cuprate superconductor La1.6x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 was measured down to 50 mK in seven crystals with doping from p=0.12p=0.12 to p=0.24p=0.24, both in the superconducting state and in the magnetic field-induced normal state. We obtain the electronic residual linear term κ0/T\kappa_0/T as T0T \to 0 across the pseudogap critical point p=0.23p^{\star}= 0.23. In the normal state, we observe an abrupt drop in κ0/T\kappa_0/T upon crossing below pp^{\star}, consistent with a drop in carrier density nn from 1+p1 + p to pp, the signature of the pseudogap phase inferred from the Hall coefficient. A similar drop in κ0/T\kappa_0/T is observed at H=0H=0, showing that the pseudogap critical point and its signatures are unaffected by the magnetic field. In the normal state, the Wiedemann-Franz law, κ0/T=L0/ρ(0)\kappa_0/T=L_0/\rho(0), is obeyed at all dopings, including at the critical point where the electrical resistivity ρ(T)\rho(T) is TT-linear down to T0T \to 0. We conclude that the non-superconducting ground state of the pseudogap phase at T=0T=0 is a metal whose fermionic excitations carry heat and charge as conventional electrons do.Comment: 10 pages, including Supplementary Materia

    Adverse outcome of infants with metastatic neuroblastoma, MYCN amplification and/or bone lesions: results of the French Society of Pediatric Oncology

    Get PDF
    To assess the relevance of MYCN amplification and bone lesions in stage 4 neuroblastoma (NB) in infants aged <1 year, 51 infants with stage 4 NB were enrolled. Three groups of patients were defined according to the type of metastases and the resectability of the primary tumour. Group I comprised 21 infants with radiologically detectable bone lesions, Group II 22 patients with an unresectable primary tumour and Group III eight patients with only metaiodobenzylguanidine (MIBG) skeletal uptake. MYCN oncogene content was assayed in 47/51 tumours and found to be amplified in 17 (37%). The 5-year event-free survival (EFS) rate of these 51 infants was 64.1% (± 7.1%). In a univariate analysis, bone lesions, MYCN amplification, urinary vanillylmandelic/homovanillic acid ratio and serum ferritin levels adversely influenced outcome. In the multivariate analysis, radiologically detectable bone lesions were the most powerful unfavourable prognostic indicator: the EFS rate was 27.2% for these infants compared to 90% for infants without bone lesions (P < 0.0001). Our data emphasize the poor prognosis of infants affected by stage 4 NB with bone lesions, especially when associated with MYCN amplification. Given the poor results in this group whatever the treatment, new therapeutic approaches need to be investigated in the future. © 2000 Cancer Research Campaig

    PlasmoView: A Web-based Resource to Visualise Global Plasmodium falciparum Genomic Variation

    Get PDF
    Malaria is a global public health challenge, with drug resistance a major barrier to disease control and elimination. To meet the urgent need for better treatments and vaccines, a deeper knowledge of Plasmodium biology and malaria epidemiology is required. An improved understanding of the genomic variation of malaria parasites, especially the most virulent Plasmodium falciparum (Pf) species, has the potential to yield new insights in these areas. High-throughput sequencing and genotyping is generating large amounts of genomic data across multiple parasite populations. The resulting ability to identify informative variants, particularly single-nucleotide polymorphisms (SNPs), will lead to the discovery of intra- and inter-population differences and thus enable the development of genetic barcodes for diagnostic assays and clinical studies. Knowledge of genetic variability underlying drug resistance and other differential phenotypes will also facilitate the identification of novel mutations and contribute to surveillance and stratified medicine applications. The PlasmoView interactive web-browsing tool enables the research community to visualise genomic variation and annotation (eg, biological function) in a geographic setting. The first release contains over 600 000 high-quality SNPs in 631 Pf isolates from laboratory strains and four malaria-endemic regions (West Africa, East Africa, Southeast Asia and Oceania)
    corecore