28 research outputs found

    Fungal biodiversity profiles 21–30

    Get PDF
    The authors describe ten new taxa for science using mostly both morphological and molecular data. In Basidiomycota, descriptions are provided for Botryobasidium fusisporum sp. nov., B. triangulosporum sp. nov., Cantharellus hydnoides sp. nov. and Hydnum aerostatisporum sp. nov. in Cantharellales; Lactarius rahjamalensis sp. nov. and Russula pseudoaurantiophylla sp. nov. in Russulales and for Mycena paraguayensis comb. nov. in Agaricales. In Ascomycota and hyphomycetes, descriptions are provided for Colletotrichurn eryngiicola sp. nov. (Glomerellales), Corynesporella indica sp. nov. (incertae sedis) and Repetophragma zygopetali sp. nov. (Microthyriales)

    Lipopolysaccharide modifies amiloride-sensitive Na+ transport processes across human airway cells: role of mitogen-activated protein kinases ERK 1/2 and 5

    Get PDF
    Bacterial lipopolysaccharides (LPS) are potent inducers of proinflammatory signaling pathways via the activation of nuclear factor-kappa B (NF-ÎșB) and mitogen-activated protein kinase (MAPK), causing changes in the processes that control lung fluid homeostasis and contributing to the pathogenesis of lung disease. In human H441 airway epithelial cells, incubation of cells with 15 ”g ml−1 LPS caused a significant reduction in amiloride-sensitive Isc from 15 ± 2 to 8 ± 2 ”A cm−2 (p = 0.01, n = 13) and a shift in IC50 amiloride of currents from 6.8 × 10−7 to 6.4 × 10−6 M. This effect was associated with a decrease in the activity of 5 pS, highly Na+ selective, amiloride-sensitive <1 ”M channels (HSC) and an increase in the activity of ∌18 pS, nonselective, amiloride-sensitive >10 ”M cation channels (NSC) in the apical membrane. LPS decreased αENaC mRNA and protein abundance, inferring that LPS inhibited αENaC gene expression. This correlated with the decrease in HSC activity, indicating that these channels, but not NSCs, were comprised of at least αENaC protein. LPS increased NF-ÎșB DNA binding activity and phosphorylation of extracellular signal-related kinase (ERK)1/2, but decreased phosphorylation of ERK5 in H441 cells. Pretreatment of monolayers with PD98059 (20 ”M) inhibited ERK1/2 phosphorylation, promoted phosphorylation of ERK5, increased αENaC protein abundance, and reversed the effect of LPS on Isc and the shift in amiloride sensitivity. Inhibitors of NF-ÎșB activation were without effect. Taken together, our data indicate that LPS acts via ERK signaling pathways to decrease αENaC transcription, reducing HSC/ENaC channel abundance, activity, and transepithelial Na+ transport in H441 airway epithelial cells

    Functional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes

    Get PDF
    A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis

    Analyse fonctionnelle et moléculaire d'un nouveau gÚne (VIT32) impliqué dans le mécanisme d'action de la vasopressine

    No full text
    RĂ©sumĂ© Les mĂ©canismes de rĂ©gulation de la rĂ©absorption fine du sodium dans la partie distale (tube distal et tube collecteur) du nĂ©phron ont un rĂŽle essentiel dans le maintien de l'homĂ©ostasie de la composition ionique et du volume des fluides extracellulaires. Ces mĂ©canismes permettent le maintien de la pression sanguine. Dans la cellule principale du tube collecteur cortical (CCD), le taux de rĂ©absorption de sodium dĂ©pend essentiellement de l'activitĂ© du canal Ă©pithĂ©lial Ă  sodium (ENaC) Ă  la membrane apicale et de la pompe sodium-potassium-adĂ©nosine-triphosphatase (Na+-K±ATPase) Ă  la membrane basolatĂ©rale. L'activitĂ© de ces deux molĂ©cules de transport est en partie rĂ©gulĂ©e par des hormones dont l'aldostĂ©rone, la vasopressine et l'insuline. Dans les cellules principales de CCD, la vasopressine rĂ©gule le transport de sodium en deux Ă©tapes : une Ă©tape prĂ©coce dite « non-gĂ©nomique » et une Ă©tape tardive dite « gĂ©notnique ». Durant l'Ă©tape prĂ©coce, la vasopressine rĂ©gule l'expression de gĂšnes, dont certains peuvent ĂȘtre impliquĂ©s dans le transport de sodium, comme ENaC et la Na+ -K+ATP ase. Le but de mon travail a Ă©tĂ© d'Ă©tudier l'implication d'une protĂ©ine appelĂ©e VIP32 (vasopressin induced protein : VIP) dans le transport de sodium. L'expression de VIP32 est augmentĂ©e par la vasopressine dans les cellules principales de CCD. Dans l'ovocyte de Xenopus laevis utilisĂ© comme systĂšme d'expression hĂ©tĂ©rologue, nous avons montrĂ© que l'expression de VIP32 provoque la maturation mĂ©iotique de l'ovocyte par l'activation de la voie des MAPK (mitogen-activated protein kinase : MAPK) et du facteur de promotion mĂ©iotique (MPF). La co-expression d'ENaC et de VIP32 diminue l'activitĂ© d'ENaC de façon sĂ©lective, par l'activation de la voie des MAPK, sans affecter l'expression du canal Ă  la surface membranaire. Nous avons Ă©galement montrĂ© que la rĂ©gulation de l'activitĂ© d'ENaC par la voie des MAPK est dĂ©pendante du mĂ©canisme de rĂ©gulation d'ENaC liĂ© Ă  un motif du canal appelĂ© PY. Ce motif est impliquĂ© dans le contrĂŽle de la probabilitĂ© d'ouverture ainsi que l'expression Ă  la surface membranaire d'ENaC. Dans les cellules principales, VIP32 par l'activation de la voie des MAPK peut ĂȘtre impliquĂ© dans la rĂ©gulation nĂ©gative du transport transĂ©pithĂ©lial qui a lieu aprĂšs plusieurs heures de traitement Ă  la vasopressine. Le tube collecteur de reins normaux prĂ©sente un taux basal significatif d'activitĂ© de la voie MAPK MEK1/2-ERK1/2. Dans la lignĂ©e mpkCCDc14 de cellules principales de CCD de souris, que nous avons utilisĂ© pour cette partie du travail, nous avons montrĂ© la prĂ©sence d'un taux basal d'activitĂ© d'ERK1/2 (pERK1/2). L'aldostĂ©rone et la vasopressine, connus pour stimuler le courant sodique transĂ©pithĂ©lial dans le CCD, ne changeaient pas le taux basal de pERK1/2. Le transport de sodium transĂ©pithĂ©lial basal, ou stimulĂ© par l'aldostĂ©rone ou la vasopressine est diminuĂ© par l'effet de PD98059, un inhibiteur de MEK1/2 qui diminue parallĂšlement le taux de pERK1/2. Nous avons Ă©galement montrĂ© dans des cellules non stimulĂ©es, ou stimulĂ©es par de l'aldostĂ©rone ou de la vasopressine, que l'activitĂ© de la Na+-K+ ATPase, mais pas celle d'ENaC est inhibĂ©e par des traitements avec diffĂ©rents inhibiteurs de MEK1/2. Par un marquage de la Na±-K+ATPase Ă  la surface membranaire nous avons montrĂ© que la voie d'ERK1/2 contrĂŽle l'activitĂ© intrinsĂšque de la Na+-K+ ATPase, plutĂŽt que son expression Ă  la surface membranaire. Ces donnĂ©es ont montrĂ© que l'activitĂ© de la Na+-K+ATPase et le transport transĂ©pithĂ©lial de sodium sont contrĂŽlĂ©s par l'activitĂ© basal et constitutive de la voie d'ERK1/2. Summary The regulation of sodium reabsorption in the distal nephron (distal tubule and cortical collecting duct) in the kidney plays an essential role in the control of extracellular fluids composition and volume, and thereby blood pressure. In the principal cell of the collecting duct (CCD), the level of sodium reabsorption mainlly depends on the activity of both epithlial sodium channel (ENaC) and sodium-potassium-adenosine-triphosphatase (Na+-K+ATPase). The activity of these two transporters is regulated by hormones especially aldosterone, vasopressin and insuline.In the principal cell of the CCD, vasopressin regulates sodium transport via a short-term effect and a late genomic effect. During the genomic effect vasopressin activates a complex network of vasopressin-dependent genes involved in the regulation of sodium transport as ENaC and Na+-K+ATPase. We were interested in the role of a recently identified vasopressin induced protein (VIP32) and its implication in the regulation of sodium transport in principal cell of the CCD. The Xenopus oocyte expression system revealed two functions : expressed alone VIP32 rapidly induces oocyte meiotic maturation through the activation of the mitogen-activated protein kinase (MAPK) pathway and the meiotic promoting factor and when co-expressed with ENaC, V1P32 selectively dowrn-egulates channel activity, but not channel cell surface expression. We have shown that the ENaC downregulation mediated by the activation of the MAPK pathway is related to the PY motif of ENaC. This motif is implicated in ENaC cell surface expression and open probability regulation. In the kidney principal cell, VIP32 through the activation of MAPK pathway may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 MAPK pathway. Using in vitro cultured mpkCCDc14 principal cells we have shown a significant basal level of ERK1/2 activity (pERK1/2). Aldosterone and vasopressin, known to upregulate sodium reabsorption in CCDs, did not change ERK1/2 activity. Basal and aldosterone- or vasopressin-stimulated sodium transport were downregulated by the MEK1/2 inhibitor PD98059 in parallel with a decrease in pERK1/2 in vitro. The activity of Na+-K+ATPase but not that of ENaC was inhibited by MEK1/2 inhibitors in both, unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface labelling showed that intrinsic activity rather than cell surface expression of Na+-K+ATPase was controlled by pERK1/2. Our data demonstrate that basal constitutive activity of ERK1/2 pathway controls Na+-K+ATPase activity and transepithelial sodium transport in the principal cell. RĂ©sumĂ© tout public Les mĂ©canismes de rĂ©gulation de la rĂ©absorption fine du sodium dans la partie distale du nĂ©phron (l'unitĂ© fonctionnelle du rein) ont un rĂŽle essentiel dans le maintien de l'homĂ©ostasie de la composition et du volume des fluides extracellulaires. Ces mĂ©canismes permettent de maintenir une pression sanguine effective. Dans les cellules principales du tube collecteur, une rĂ©gion spĂ©cifique du nĂ©phron distal, le transport de sodium dĂ©pend essentiellement de l'activitĂ© de deux transporteurs de sodium : le canal Ă©pithĂ©lial Ă  sodium (ENaC) et la pompe sodium-potassium-adĂ©nosine-triphosphatase (Na+-K+ATPase). Afin de rĂ©pondre aux besoins de l'organisme, l'activitĂ© de ces deux molĂ©cules de transport est en partie rĂ©gulĂ©e par des hormones dont l'aldostĂ©rone, la vasopressine et l'insuline. Dans les cellules principales du tube collecteur, la vasopressine rĂ©gule le transport de sodium en deux Ă©tapes : une Ă©tape rapide et une Ă©tape lente dite « gĂ©nomique ». Durant l'Ă©tape lente, la vasopressine rĂ©gule l'expression de gĂšnes pouvant ĂȘtre impliquĂ©s dans le transport de sodium, dont notamment ceux d'ENaC et de la Na+-K+ATPase. Parmi les gĂšnes dont l'expression est augmentĂ©e par la vasopressine, celui de VIP32 (vasopressin induced protein : VIP) fait l'objet de cette Ă©tude. Le but de mon travail a Ă©tĂ© d'Ă©tudier, dans un systĂšme d'expression hĂ©tĂ©rologue (l'ovocyte de Xenopus leavis), l'implication de VIP32 dans le transport de sodium. Nous avons montrĂ© que VIP32 est capable d'activer un mĂ©canisme molĂ©culaire en cascade appelĂ© MAPK (mitogen-activated protein kinase : MAPK) et est aussi capable de diminuer l'activitĂ© d'ENaC. ParallĂšlement, dans une lignĂ©e de cellules principales de tube collecteur les mpkCCDc14, nous avons montrĂ© que le taux basal d'activitĂ© de la cascade MAPK est capable de rĂ©guler l'activitĂ© de la Na+-K+ATPase, tandis qu'il n'influence pas l'activitĂ© d'ENaC

    A novel vasopressin-induced transcript promotes MAP kinase activation and ENaC downregulation

    No full text
    In the principal cell of the renal collecting duct, vasopressin regulates the expression of a gene network responsible for sodium and water reabsorption through the regulation of the water channel and the epithelial sodium channel (ENaC). We have recently identified a novel vasopressin-induced transcript (VIT32) that encodes for a 142 amino acid vasopressin-induced protein (VIP32), which has no homology with any protein of known function. The Xenopus oocyte expression system revealed two functions: (i) when injected alone, VIT32 cRNA rapidly induces oocyte meiotic maturation through the activation of the maturation promoting factor, the amphibian homolog of the universal M phase trigger Cdc2/cyclin; and (ii) when co-injected with the ENaC, VIT32 cRNA selectively downregulates channel activity, but not channel cell surface expression. In the kidney principal cell, VIP32 may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. VIP32 belongs to a novel gene family ubiquitously expressed in oocyte and somatic cells that may be involved in G to M transition and cell cycling
    corecore