902 research outputs found
Multiband effective bond-orbital model for nitride semiconductors with wurtzite structure
A multiband empirical tight-binding model for group-III-nitride
semiconductors with a wurtzite structure has been developed and applied to both
bulk systems and embedded quantum dots. As a minimal basis set we assume one
s-orbital and three p-orbitals, localized in the unit cell of the hexagonal
Bravais lattice, from which one conduction band and three valence bands are
formed. Non-vanishing matrix elements up to second nearest neighbors are taken
into account. These matrix elements are determined so that the resulting
tight-binding band structure reproduces the known Gamma-point parameters, which
are also used in recent kp-treatments. Furthermore, the tight-binding band
structure can also be fitted to the band energies at other special symmetry
points of the Brillouin zone boundary, known from experiment or from
first-principle calculations. In this paper, we describe details of the
parametrization and present the resulting tight-binding band structures of bulk
GaN, AlN, and InN with a wurtzite structure. As a first application to
nanostructures, we present results for the single-particle electronic
properties of lens-shaped InN quantum dots embedded in a GaN matrix.Comment: 10 pages, 5 figures, two supplementary file
A discontinuous Galerkin method for the Vlasov-Poisson system
A discontinuous Galerkin method for approximating the Vlasov-Poisson system
of equations describing the time evolution of a collisionless plasma is
proposed. The method is mass conservative and, in the case that piecewise
constant functions are used as a basis, the method preserves the positivity of
the electron distribution function and weakly enforces continuity of the
electric field through mesh interfaces and boundary conditions. The performance
of the method is investigated by computing several examples and error estimates
associated system's approximation are stated. In particular, computed results
are benchmarked against established theoretical results for linear advection
and the phenomenon of linear Landau damping for both the Maxwell and Lorentz
distributions. Moreover, two nonlinear problems are considered: nonlinear
Landau damping and a version of the two-stream instability are computed. For
the latter, fine scale details of the resulting long-time BGK-like state are
presented. Conservation laws are examined and various comparisons to theory are
made. The results obtained demonstrate that the discontinuous Galerkin method
is a viable option for integrating the Vlasov-Poisson system.Comment: To appear in Journal for Computational Physics, 2011. 63 pages, 86
figure
Lower bound for electron spin entanglement from beamsplitter current correlations
We determine a lower bound for the entanglement of pairs of electron spins
injected into a mesoscopic conductor. The bound can be expressed in terms of
experimentally accessible quantities, the zero-frequency current correlators
(shot noise power or cross-correlators) after transmission through an
electronic beam splitter. The effect of spin relaxation (T_1 processes) and
decoherence (T_2 processes) during the ballistic coherent transmission of the
carriers in the wires is taken into account within Bloch theory. The presence
of a variable inhomogeneous magnetic field allows the determination of a useful
lower bound for the entanglement of arbitrary entangled states. The decrease in
entanglement due to thermally mixed states is studied. Both the entanglement of
the output of a source (entangler) and the relaxation (T_1) and decoherence
(T_2) times can be determined.Comment: 4 pages, 3 figure
Optical readout of charge and spin in a self-assembled quantum dot in a strong magnetic field
We present a theory and experiment demonstrating optical readout of charge
and spin in a single InAs/GaAs self-assembled quantum dot. By applying a
magnetic field we create the filling factor 2 quantum Hall singlet phase of the
charged exciton. Increasing or decreasing the magnetic field leads to
electronic spin-flip transitions and increasing spin polarization. The
increasing total spin of electrons appears as a manifold of closely spaced
emission lines, while spin flips appear as discontinuities of emission lines.
The number of multiplets and discontinuities measures the number of carriers
and their spin. We present a complete analysis of the emission spectrum of a
single quantum dot with N=4 electrons and a single hole, calculated and
measured in magnetic fields up to 23 Tesla.Comment: 9 pages, 3 figures, submitted to Europhysics Letter
Quantitative Topographical Characterization of Thermally Sprayed Coatings by Optical Microscopy
Topography measurements and roughness calculations for different rough surfaces (Rugotest surface comparator and thermally sprayed coatings) are presented. The surfaces are measured with a novel quantitative topography measurement technique based on optical stereomicroscopy and a comparison is made with established scanning stylus and optical profilometers. The results show that for most cases the different methods yield similar results. Stereomicroscopy is therefore a valuable method for topographical investigations in both quality control and research. On the other hand, the method based on optical microscopy demands a careful optimization of the experimental settings like the magnification and the illumination to achieve satisfactory result
Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems
A microscopic theory is used to study the optical properties of semiconductor
quantum dots. The dephasing of a coherent excitation and line-shifts of the
interband transitions due to carrier-carrier Coulomb interaction and
carrier-phonon interaction are determined from a quantum kinetic treatment of
correlation processes. We investigate the density dependence of both mechanisms
and clarify the importance of various dephasing channels involving the
localized and delocalized states of the system.Comment: 12 pages, 10 figure
- …