731 research outputs found

    Can the frequency-dependent specific heat be measured by thermal effusion methods?

    Full text link
    It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat spectroscopy do not give the isobaric specific heat, but rather the so-called longitudinal specific heat. Here it is shown that heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat.Comment: Paper presented at the Fifth International Workshop on Complex Systems (Sendai, September, 2007), to appear in AIP Conference Proceeding

    Fluctuation effects in the theory of microphase separation of diblock copolymers in the presence of an electric field

    Full text link
    We generalize the Fredrickson-Helfand theory of the microphase separation in symmetric diblock copolymer melts by taking into account the influence of a time-independent homogeneous electric field on the composition fluctuations within the self-consistent Hartree approximation. We predict that electric fields suppress composition fluctuations, and consequently weaken the first-order transition. In the presence of an electric field the critical temperature of the order-disorder transition is shifted towards its mean-field value. The collective structure factor in the disordered phase becomes anisotropic in the presence of the electric field. Fluctuational modulations of the order parameter along the field direction are strongest suppressed. The latter is in accordance with the parallel orientation of the lamellae in the ordered state.Comment: 16 page

    Novel Extrapolation Method in the Monte Carlo Shell Model

    Get PDF
    We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model in order to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pfpf-shell calculation of 56^{56}Ni, and the applicability of the method to a system beyond current limit of exact diagonalization is shown for the pfpf+g9/2g_{9/2}-shell calculation of 64^{64}Ge.Comment: 4 pages, 4figure

    Ultra-violet Behavior of Bosonic Quantum Membranes

    Get PDF
    We treat the action for a bosonic membrane as a sigma model, and then compute quantum corrections by integrating out higher membrane modes. As in string theory, where the equations of motion of Einstein's theory emerges by setting ÎČ=0\beta = 0, we find that, with certain assumptions, we can recover the equations of motion for the background fields. Although the membrane theory is non-renormalizable on the world volume by power counting, the investigation of the ultra-violet behavior of membranes may give us insight into the supersymmetric case, where we hope to obtain higher order M-theory corrections to 11 dimensional supergravity.Comment: 25 pages, Latex, no figure

    Magic numbers in exotic nuclei and spin-isospin properties of {\it NN} interaction

    Get PDF
    The magic numbers in exotic nuclei are discussed, and their novel origin is shown to be the spin-isospin dependent part of the nucleon-nucleon interaction in nuclei. The importance and robustness of this mechanism is shown in terms of meson exchange, G-matrix and QCD theories. In neutron-rich exotic nuclei, magic numbers such as N = 8, 20, etc. can disappear, while N = 6, 16, etc. arise, affecting the structure of lightest exotic nuclei to nucleosynthesis of heavy elements.Comment: 4 pages, 3 figures, revte

    Nuclear Shell Model by the Quantum Monte Carlo Diagonalization Method

    Full text link
    The feasibility of shell-model calculations is radically extended by the Quantum Monte Carlo Diagonalization method with various essential improvements. The major improvements are made in the sampling for the generation of shell-model basis vectors, and in the restoration of symmetries such as angular momentum and isospin. Consequently the level structure of low-lying states can be studied with realistic interactions. After testing this method on 24^{24}Mg, we present first results for energy levels and E2E2 properties of 64^{64}Ge, indicating its large and Îł\gamma-soft deformation.Comment: 12 pages, RevTex, 2 figures, to be published in Physical Review Letter

    QKZ equation with |q|=1 and correlation functions of the XXZ model in the gapless regime

    Full text link
    An integral solution to the quantum Knizhnik-Zamolodchikov (qqKZ) equation with ∣q∣=1|q|=1 is presented. Upon specialization, it leads to a conjectural formula for correlation functions of the XXZ model in the gapless regime. The validity of this conjecture is verified in special cases, including the nearest neighbor correlator with an arbitrary coupling constant, and general correlators in the XXX and XY limits

    Coulomb Blockade and Coherent Single-Cooper-Pair Tunneling in Single Josephson Junctions

    Full text link
    We have measured the current-voltage characteristics of small-capacitance single Josephson junctions at low temperatures (T < 0.04 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. We have clearly observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance of the SQUID arrays is much higher than the quantum resistance h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling in the single Josephson junction.Comment: RevTeX, 4 pages with 6 embedded figure

    A quantum homogeneous space of nilpotent matrices

    Full text link
    A quantum deformation of the adjoint action of the special linear group on the variety of nilpotent matrices is introduced. New non-embedded quantum homogeneous spaces are obtained related to certain maximal coadjoint orbits, and known quantum homogeneous spaces are revisited.Comment: 12 page
    • 

    corecore