31 research outputs found

    α1-Syntrophin–deficient skeletal muscle exhibits hypertrophy and aberrant formation of neuromuscular junctions during regeneration

    Get PDF
    α1-Syntrophin is a member of the family of dystrophin-associated proteins; it has been shown to recruit neuronal nitric oxide synthase and the water channel aquaporin-4 to the sarcolemma by its PSD-95/SAP-90, Discs-large, ZO-1 homologous domain. To examine the role of α1-syntrophin in muscle regeneration, we injected cardiotoxin into the tibialis anterior muscles of α1-syntrophin–null (α1syn−/−) mice. After the treatment, α1syn−/− muscles displayed remarkable hypertrophy and extensive fiber splitting compared with wild-type regenerating muscles, although the untreated muscles of the mutant mice showed no gross histological change. In the hypertrophied muscles of the mutant mice, the level of insulin-like growth factor-1 transcripts was highly elevated. Interestingly, in an early stage of the regeneration process, α1syn−/− mice showed remarkably deranged neuromuscular junctions (NMJs), accompanied by impaired ability to exercise. The contractile forces were reduced in α1syn−/− regenerating muscles. Our results suggest that the lack of α1-syntrophin might be responsible in part for the muscle hypertrophy, abnormal synapse formation at NMJs, and reduced force generation during regeneration of dystrophin-deficient muscle, all of which are typically observed in the early stages of Duchenne muscular dystrophy patients

    Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice

    Novel Urinary Glycan Biomarkers Predict Cardiovascular Events in Patients With Type 2 Diabetes: A Multicenter Prospective Study With 5-Year Follow Up (U-CARE Study 2)

    Get PDF
    Background: Although various biomarkers predict cardiovascular event (CVE) in patients with diabetes, the relationship of urinary glycan profile with CVE in patients with diabetes remains unclear. Methods: Among 680 patients with type 2 diabetes, we examined the baseline urinary glycan signals binding to 45 lectins with different specificities. Primary outcome was defined as CVE including cardiovascular disease, stroke, and peripheral arterial disease. Results: During approximately a 5-year follow-up period, 62 patients reached the endpoint. Cox proportional hazards analysis revealed that urinary glycan signals binding to two lectins were significantly associated with the outcome after adjustment for known indicators of CVE and for false discovery rate, as well as increased model fitness. Hazard ratios for these lectins (+1 SD for the glycan index) were UDA (recognizing glycan: mixture of Man5 to Man9): 1.78 (95% CI: 1.24-2.55, P = 0.002) and Calsepa [High-Man (Man2-6)]: 1.56 (1.19-2.04, P = 0.001). Common glycan binding to these lectins was high-mannose type of N-glycans. Moreover, adding glycan index for UDA to a model including known confounders improved the outcome prediction [Difference of Harrel's C-index: 0.028 (95% CI: 0.001-0.055, P = 0.044), net reclassification improvement at 5-year risk increased by 0.368 (0.045-0.692, P = 0.026), and the Akaike information criterion and Bayesian information criterion decreased from 725.7 to 716.5, and 761.8 to 757.2, respectively]. Conclusion: The urinary excretion of high-mannose glycan may be a valuable biomarker for improving prediction of CVE in patients with type 2 diabetes, and provides the rationale to explore the mechanism underlying abnormal N-glycosylation occurring in patients with diabetes at higher risk of CVE

    Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors

    Get PDF
    AK2 is an adenylate phosphotransferase that localizes at the intermembrane spaces of the mitochondria, and its mutations cause a severe combined immunodeficiency with neutrophil maturation arrest named reticular dysgenesis (RD). Although the dysfunction of hematopoietic stem cells (HSCs) has been implicated, earlier developmental events that affect the fate of HSCs and/or hematopoietic progenitors have not been reported. Here, we used RD-patient-derived induced pluripotent stem cells (iPSCs) as a model of AK2-deficient human cells. Hematopoietic differentiation from RD-iPSCs was profoundly impaired. RD-iPSC-derived hemoangiogenic progenitor cells (HAPCs) showed decreased ATP distribution in the nucleus and altered global transcriptional profiles. Thus, AK2 has a stage-specific role in maintaining the ATP supply to the nucleus during hematopoietic differentiation, which affects the transcriptional profiles necessary for controlling the fate of multipotential HAPCs. Our data suggest that maintaining the appropriate energy level of each organelle by the intracellular redistribution of ATP is important for controlling the fate of progenitor cells

    Characterization of a novel microRNA, miR-188, elevated in serum of muscular dystrophy dog model.

    No full text
    MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression at the post-transcriptional level. Several miRNAs are exclusively expressed in skeletal muscle and participate in the regulation of muscle differentiation by interacting with myogenic factors. These miRNAs can be found at high levels in the serum of patients and animal models for Duchenne muscular dystrophy, which is expected to be useful as biomarkers for their clinical conditions. By miRNA microarray analysis, we identified miR-188 as a novel miRNA that is elevated in the serum of the muscular dystrophy dog model, CXMDJ. miR-188 was not muscle-specific miRNA, but its expression was up-regulated in skeletal muscles associated with muscle regeneration induced by cardiotoxin-injection in normal dogs and mice. Manipulation of miR-188 expression using antisense oligo and mimic oligo RNAs alters the mRNA expression of the myogenic regulatory factors, MRF4 and MEF2C. Our results suggest that miR-188 is a new player that participates in the gene regulation process of muscle differentiation and that it may serve as a serum biomarker reflecting skeletal muscle regeneration

    Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils

    Get PDF
    Abstract. Cultured cardiac myocytes were stained with antibodies to sarcomeric ot-actinin, troponin-I, tx,-actin, myosin heavy chain (MHC), titin, myomesin, C-protein, and vinculin. Attention was focused on the distribution of these proteins with respect to nonstriated myofibrils (NSMFs) and striated myofibrils (SMFs). In NSMFs, ot-actinin is found as longitudinally aligned, irregular,,o0.3-#m aggregates. Such aggregates are associated with ot-actin, troponin-I, and titin. These I-Z-I-like complexes are also found as ectopic patches outside the domain of myofibrils in close apposition to the ventral surface of the cell. MHC is found outside of SMFs in the form of discrete fbrils. The temporal-spatial distribution and accumulation of the MHC-fibrils with respect to the I-Z-I-like complexe
    corecore