24 research outputs found

    Changes in creatine transporter function during cardiac maturation in the rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well established that the immature myocardium preferentially utilises non-oxidative energy-generating pathways. It exhibits low energy-transfer capacity via the creatine kinase (CK) shuttle, reflected in phosphocreatine (PCr), total creatine and CK levels that are much lower than those of adult myocardium. The mechanisms leading to gradually increasing energy transfer capacity during maturation are poorly understood. Creatine is not synthesised in the heart, but taken up exclusively by the action of the creatine transporter protein (CrT). To determine whether this transporter is ontogenically regulated, the present study serially examined CrT gene expression pattern, together with creatine uptake kinetics and resulting myocardial creatine levels, in rats over the first 80 days of age.</p> <p>Results</p> <p>Rats were studied during the late prenatal period (-2 days before birth) and 7, 13, 21, 33, 50 and 80 days after birth. Activity of cardiac citrate synthase, creatine kinase and its isoenzymes as well as lactate dehydrogenase (LDH) and its isoenzymes demonstrated the well-described shift from anaerobic towards aerobic metabolism. mRNA levels of CrT in the foetal rat hearts, as determined by real-time PCR, were about 30% of the mRNA levels in the adult rat heart and gradually increased during development. Creatine uptake in isolated perfused rat hearts increased significantly from 3.0 nmol/min/gww at 13 days old to 4.9 nmol/min/gww in 80 day old rats. Accordingly, total creatine content in hearts, measured by HPLC, increased steadily during maturation (30 nmol/mg protein (-2 days) vs 87 nmol/mg protein (80 days)), and correlated closely with CrT gene expression.</p> <p>Conclusions</p> <p>The maturation-dependant alterations of CK and LDH isoenzyme activities and of mitochondrial oxidative capacity were paralleled by a progressive increase of CrT expression, creatine uptake kinetics and creatine content in the heart.</p

    Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine

    Get PDF
    Aims: Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results: Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions: Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases

    Data on triiodothyronine treated peroxisome proliferator-activated receptor-alpha-null mouse hearts using magnetic resonance imaging and magnetic resonance spectroscopy

    No full text
    This data contain left ventricular end-diastolic volumes, end-systolic volumes, stroke volumes, ejection fractions, cardiac outputs, heart rates, phosphocreatine concentrations, adenosine 5’-triphosphate (ATP) concentrations, total creatine concentrations, citrate synthase activities and heart weights for wild-type and peroxisome proliferator-activated receptor-alpha-null mouse hearts without and with triiodothyronine treatment

    Data on uncoupling protein-3 levels, hypoxia, low flow ischemia, and insulin stimulation in dystrophin-deficient mdx mouse hearts

    No full text
    The data contain body weights, plasma free fatty acids concentrations and cardiac uncoupling protein-3 protein levels for wild-type and mdx mice. The data provide heart rates, left ventricular contractile functions, coronary flow, phosphocreatine concentrations, and adenosine 5’-triphosphate (ATP) concentrations throughout hypoxia in mdx mouse hearts. This data article also provides left ventricular contractile functions after low flow ischemia with and without glucose, glycogen levels before ischemia or hypoxia, glucose uptake rates during low flow ischemia and insulin stimulation, and insulin-stimulated phospho-Akt protein levels, a protein in insulin signaling, in mdx mouse hearts

    Cardiac structure and function during ageing in energetically compromised Guanidinoacetate N-methyltransferase (GAMT)-knockout mice - a one year longitudinal MRI study

    Get PDF
    BACKGROUND: High-resolution magnetic resonance imaging (cine-MRI) is well suited for determining global cardiac function longitudinally in genetically or surgically manipulated mice, but in practice it is seldom used to its full potential. In this study, male and female guanidinoacetate N-methyltransferase (GAMT) knockout, and wild type littermate mice were subjected to a longitudinal cine-MRI study at four time points over the course of one year. GAMT is an essential enzyme in creatine biosynthesis, such that GAMT deficient mice are entirely creatine-free. Since creatine plays an important role in the buffering and transfer of high-energy phosphate bonds in the heart, it was hypothesized that lack of creatine would be detrimental for resting cardiac performance during ageing. METHODS: Measurements of cardiac structure (left ventricular mass and volumes) and function (ejection fraction, stroke volume, cardiac output) were obtained using high-resolution cine-MRI at 9.4 T under isoflurane anaesthesia. RESULTS: There were no physiologically significant differences in cardiac function between wild type and GAMT knockout mice at any time point for male or female groups, or for both combined (for example ejection fraction: 6 weeks (KO vs. WT): 70 +/- 6% vs. 65 +/- 7%; 4 months: 70 +/- 6% vs. 62 +/- 8%; 8 months: 62 +/- 11% vs. 62 +/- 6%; 12 months: 61 +/- 7% vs. 59 +/- 11%, respectively). CONCLUSION: These findings suggest the presence of comprehensive adaptations in the knockout mice that can compensate for a lack of creatine. Furthermore, this study clearly demonstrates the power of cine-MRI for accurate non-invasive, serial cardiac measurements. Cardiac growth curves could easily be defined for each group, in the same set of animals for all time points, providing improved statistical power, and substantially reducing the number of mice required to conduct such a study. This technique should be eminently useful for following changes of cardiac structure and function during ageing
    corecore