37 research outputs found

    Syngas Production from Electrochemical Reduction of CO2: Current Status and Prospective Implementation

    Get PDF
    The CO2 that comes from the use of fossil fuels accounts for about 65% of the global greenhouse gas emission, and it plays a critical role in global climate changes. Among the different strategies that have been considered to address the storage and reutilization of CO2, the transformation of CO2 into chemicals or fuels with a high added-value has been considered a winning approach. This transformation is able to reduce the carbon emission and induce a “fuel switching” that exploits renewable energy sources. The aim of this brief review is to gather and critically analyse the main efforts that have been made and achievements that have been made in the electrochemical reduction of CO2 for the production of CO. The main focus is on the prospective of exploiting the intrinsic nature of the electrolysis process, in which CO2 reduction and H2 evolution reactions can be combined, into a competitive approach, to produce syngas. Several well-established processes already exist for the generation of fuels and fine-chemicals from H2/CO mixtures of different ratios. Hence, the different kinds of electrocatalysts and electrochemical reactors that have been used for the CO and H2 evolution reactions have been analysed, as well as the main factors that influence the performance of the system from the thermodynamic, kinetic and mass transport points of view

    On the thermal stabilization of carbon-supported SiO2 catalysts by phosphorus:evaluation in the oxidative dehydrogenation of ethylbenzene to styrene and a comparison with relevant catalysts

    Get PDF
    A strategy to enhance the thermal stability of C/SiO2 hybrids for the O2-based oxidative dehydrogenation of ethylbenzene to styrene (ST) by P addition is proposed. The preparation consists of the polymerization of furfuryl alcohol (FA) on a mesoporous precipitated SiO2. The polymerization is catalyzed by oxalic acid (OA) at 160 °C (FA:OA = 250). Phosphorous was added as H3PO4 after the polymerization and before the pyrolysis that was carried out at 700 °C and will extend the overall activation procedure. Estimation of the apparent activation energies reveals that P enhances the thermal stability under air oxidation, which is a good indication for the ODH tests. Catalytic tests show that the P/C/SiO2 hybrids are readily active, selective and indeed stable in the applied reactions conditions for 60 h time on stream. Coke build-up during the reaction attributed to the P-based acidity is substantial, leading to a reduction of the surface area and pore volume. The comparison with a conventional MWCNT evidences that the P/C/SiO2 hybrids are more active and selective at high temperatures (450–475 °C) while the difference becomes negligible at lower temperature. However, the comparison with reference P/SiO2 counterparts shows a very similar yield than the hybrids but more selective to ST. The benefit of the P/C/SiO2 hybrid is the lack of stabilization period, which is observed for the P/SiO2 to create an active coke overlayer. For long term operation, P/SiO2 appears to be a better choice in terms of selectivity, which is crucial for commercialization

    The influence of NO x on soot oxidation rate: molten salt versus platinum

    Get PDF
    Abstract A systematic study was carried out to assess the influence of simulated diesel exhaust on the activity of molten salt, Cs 2 SO 4 ·V 2 O 5 , supported on ceramic foam and Pt/␥-alumina catalysts in the oxidation of diesel soot. Gas compositions containing O 2 , NO x , CO, C 3 H 6 , and SO 2 were used. The activity of molten salt catalyst, an active catalyst for the oxidation of soot with O 2 , is slightly affected by the gas component due to NO 2 already present in NO x . In contrast, the presence of NO x , significantly increases the soot oxidation rate with platinum catalyst. These changes were due to the catalytic oxidation of NO to NO 2 with platinum, followed by soot oxidation with NO 2 . Three configurations are compared, viz. a fixed bed containing a physical mixture of Pt catalyst and soot, Pt catalyst upstream of a fixed bed containing soot, and Pt catalyst upstream of soot loaded on ceramic foam supported molten salt. The reaction cycle of oxidation of NO, followed by soot oxidation with the NO 2 produced, was observed only in a physical mixture of platinum catalyst and soot
    corecore