32 research outputs found

    Wastewater treatment plant contaminant profiles affect macroinvertebrate sludge degradation

    Get PDF
    Disposal of the overwhelming amounts of excess wastewater treatment plant (WWTP) sludge is an increasing financial and environmental problem, and new methods to reduce the amount of excess sludge are therefore required. In the natural environment, interactions between multiple macroinvertebrate detritivores mediate the degradation of organic matter. Macroinvertebrates may thus also be able to degrade WWTP sludge, but may meanwhile be impacted by the associated contaminants. Therefore, the aim of the present study was to examine if WWTPs contaminant concentrations and profiles affect the biotic interactions and macroinvertebrate mediated degradation of sludge. Assessing degradation of sludge from three WWTPs differing in contaminant profile by (combinations of) three macroinvertebrate detritovore taxa, revealed that macroinvertebrate enhanced sludge degradation was WWTP and taxa combination specific. Yet, taxa combinations only had an additional positive effect on sludge degradation when compared to single taxa in sludge with a higher contaminant load. This was confirmed by the results of a Cu-spiked sludge degradation experiment, indicating a possible effect of biotic interactions. It was concluded that macroinvertebrates are a potential tool for the reduction of excess WWTP sludge, and that using multispecies assemblages of detritivorous macroinvertebrates may increase the resilience of this additional treatment step

    2010-MarinkovicKraak-final.qxd

    No full text
    Chironomus riparius toxicity tests are commonly performed on natural, thus variable, sediments. The introduction of transcriptomics in ecotoxicology increased the necessity for reduced experimental variability. To this purpose we developed an easily made artificial sediment and monitored larval development. We showed that larval development was synchronized and that the days when specific larval stages are reached can be identified. We conclude that the newly developed artificial sediment will facilitate the use of transcriptomics in ecotoxicology

    Benthic invertebrate bioturbation activity determines species specific sensitivity to sediment contamination

    Get PDF
    Bioturbation activity of sediment-dwelling organisms promotes the release of contaminants across the benthic-pelagic ecosystem boundary, thereby affecting the exposure to and uptake of sediment associated contaminants at the sediment-water interface by themselves and the entire community around them. This way, bioturbation activity may contribute to species specific sensitivities to sediment associated compounds. Therefore we assessed, based on literature data, if invertebrate bioturbation activity determines species specific sensitivities to sediment contamination. For two metals, Ni and Cu, sufficient data were available to construct Species Sensitivity Distributions (SSD). The position of the species in the SSDs could indeed be linked to their bioturbation rate: the most active bioturbators being the most sensitive benthic invertebrates. Active bioturbators thus enhance their exposure and therewith their sensitivity to sediment associated toxicants. Moreover, active bioturbators can hence promote the release of sediment-associated contaminants across the benthic-pelagic ecosystem boundary, thereby stimulating delivery of contaminants from what is often the most polluted environmental compartment in freshwater ecosystems. It is concluded that trait based ecotoxicology offers a possibly potent tool for predicting sensitivity of benthic invertebrates and the benthic community to sediment-associated contaminants

    Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms

    Get PDF
    Decomposition of organic matter is an important ecosystem process governed in part by bacteria. The process of decomposition is expected to benefit from interspecific bacterial interactions such as resource partitioning and facilitation. However, the relative importance of resource niche breadth (metabolic diversity) and resource niche overlap (functional redundancy) on decomposition and the temporal stability of ecosystem processes received little scientific attention. Therefore, this study aims to evaluate the effect of an increase in bacterial community resemblance on both decomposition and the stability of bacterial metabolism in aquatic sediments. To this end, we performed laboratory microcosm experiments in which we examined the influence of bacterial consortia differing in number and composition of species on bacterial activity (Electron Transport System Activity, ETSA), dissolved organic carbon production and wavelet transformed measurements of redox potential (Eh). Single substrate affinities of the individual bacterial species were determined in order to calculate the metabolic diversity of the microbial community. Results presented here indicate that bacterial activity and organic matter decomposition increase with widening of the resource niche breadth, and that metabolic stability increases with increasing overlap in bacterial resource niches, hinting that resource niche overlap can promote the stability of bacterial community metabolism
    corecore