2,508 research outputs found

    pp Wave Big Bangs: Matrix Strings and Shrinking Fuzzy Spheres

    Get PDF
    We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate Matrix String Theory in these backgrounds. Near the big bang ``singularity'', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. We show that, for a class of pp waves, fuzzy cylinders which start out big at early times dynamically shrink into usual strings at sufficiently late times.Comment: 29 pages, ReVTeX and AMSLaTeX. 4 Figures. v2: Typo corrected and reference adde

    Modern Michelson-Morley experiment using cryogenic optical resonators

    Full text link
    We report on a new test of Lorentz invariance performed by comparing the resonance frequencies of two orthogonal cryogenic optical resonators subject to Earth's rotation over 1 year. For a possible anisotropy of the speed of light c, we obtain 2.6 +/- 1.7 parts in 10^15. Within the Robertson-Mansouri-Sexl test theory, this implies an isotropy violation parameter beta - delta - 1/2 of -2.2 +/- 1.5 parts in 10^9, about three times lower than the best previous result. Within the general extension of the standard model of particle physics, we extract limits on 7 parameters at accuracies down to a part in 10^15, improving the best previous result by about two orders of magnitude

    Cosmologies with Null Singularities and their Gauge Theory Duals

    Get PDF
    We investigate backgrounds of Type IIB string theory with null singularities and their duals proposed in hep-th/0602107. The dual theory is a deformed N=4 Yang-Mills theory in 3+1 dimensions with couplings dependent on a light-like direction. We concentrate on backgrounds which become AdS_5 x S^5 at early and late times and where the string coupling is bounded, vanishing at the singularity. Our main conclusion is that in these cases the dual gauge theory is nonsingular. We show this by arguing that there exists a complete set of gauge invariant observables in the dual gauge theory whose correlation functions are nonsingular at all times. The two-point correlator for some operators calculated in the gauge theory does not agree with the result from the bulk supergravity solution. However, the bulk calculation is invalid near the singularity where corrections to the supergravity approximation become important. We also obtain pp-waves which are suitable Penrose limits of this general class of solutions, and construct the Matrix Membrane theory which describes these pp-wave backgrounds.Comment: 43 pages REVTeX and AMSLaTeX. v2: references adde

    Relativity tests by complementary rotating Michelson-Morley experiments

    Full text link
    We report Relativity tests based on data from two simultaneous Michelson-Morley experiments, spanning a period of more than one year. Both were actively rotated on turntables. One (in Berlin, Germany) uses optical Fabry-Perot resonators made of fused silica; the other (in Perth, Australia) uses microwave whispering-gallery sapphire resonators. Within the standard model extension, we obtain simultaneous limits on Lorentz violation for electrons (5 coefficients) and photons (8) at levels down to 101610^{-16}, improved by factors between 3 and 50 compared to previous work.Comment: 5 pages revtex, 2 figure

    Arago (1810): the first experimental result against the ether

    Get PDF
    95 years before Special Relativity was born, Arago attempted to detect the absolute motion of the Earth by measuring the deflection of starlight passing through a prism fixed to the Earth. The null result of this experiment gave rise to the Fresnel's hypothesis of an ether partly dragged by a moving substance. In the context of Einstein's Relativity, the sole frame which is privileged in Arago's experiment is the proper frame of the prism, and the null result only says that Snell's law is valid in that frame. We revisit the history of this premature first evidence against the ether theory and calculate the Fresnel's dragging coefficient by applying the Huygens' construction in the frame of the prism. We expose the dissimilar treatment received by the ray and the wave front as an unavoidable consequence of the classical notions of space and time.Comment: 16 pages. To appear in European Journal of Physic

    Bounds on Lorentz and CPT Violation from the Earth-Ionosphere Cavity

    Full text link
    Electromagnetic resonant cavities form the basis of many tests of Lorentz invariance involving photons. The effects of some forms of Lorentz violation scale with cavity size. We investigate possible signals of violations in the naturally occurring resonances formed in the Earth-ionosphere cavity. Comparison with observed resonances places the first terrestrial constraints on coefficients associated with dimension-three Lorentz-violating operators at the level of 10^{-20} GeV.Comment: 8 pages REVTe

    Superconformal Quantum Mechanics of Small Black Holes

    Full text link
    Recently, Gaiotto, Strominger and Yin have proposed a holographic dual description for the near-horizon physics of certain N=2 black holes in terms of the superconformal quantum mechanics on D0-branes in the attractor geometry. We provide further evidence for their proposal by applying it to the case of `small' black holes which have vanishing horizon area in the leading supergravity approximation. We consider 2-charge black holes in type IIA on T2×MT^2 \times M, where MM can be either K3K_3 or T4T^4, made up out of D0-branes and D4-branes wrapping MM. We construct the corresponding superconformal quantum mechanics and show that the asymptotic growth of chiral primaries exactly matches with the known entropy of these black holes. The state-counting problem reduces to counting lowest Landau levels on T2T^2 and Dolbeault cohomology classes on MM.Comment: Latex, 16 pages; v2: minor corrections, references added, published versio

    Dimensional Reduction without Extra Continuous Dimensions

    Full text link
    We describe a novel approach to dimensional reduction in classical field theory. Inspired by ideas from noncommutative geometry, we introduce extended algebras of differential forms over space-time, generalized exterior derivatives and generalized connections associated with the "geometry" of space-times with discrete extra dimensions. We apply our formalism to theories of gauge- and gravitational fields and find natural geometrical origins for an axion- and a dilaton field, as well as a Higgs field.Comment: 23 page

    Improved Constraints on Isotropic Shift and Anisotropies of the Speed of Light using Rotating Cryogenic Sapphire Oscillators

    Get PDF
    We demonstrate that Michelson-Morley tests, which detect direction-dependent anisotropies in the speed of light, can also be used to place limits upon isotropic deviations of the vacuum speed of light from cc, as described by the photon sector Standard Model Extension (SME) parameter κ~tr\tilde{\kappa}_{tr}. A shift in the speed of light that is isotropic in one inertial frame implies anisotropic shifts in others. Using observer Lorentz covariance, we derive the time-dependent variations in the relative resonance frequencies of a pair of electromagnetic resonators that would be generated by such a shift in the rest frame of the Sun. A new analysis of a recent experimental test of relativity using this result constrains κ~tr\tilde{\kappa}_{tr} with a precision of 7.4×1097.4\times10^{-9}. This represents the first constraint on κ~tr\tilde{\kappa}_{tr} by a Michelson-Morley experiment and the first analysis of a single experiment to simultaneously set limits on all nine non-birefringent terms in the photon sector of the SME

    Electrodynamics with Lorentz-violating operators of arbitrary dimension

    Get PDF
    The behavior of photons in the presence of Lorentz and CPT violation is studied. Allowing for operators of arbitrary mass dimension, we classify all gauge-invariant Lorentz- and CPT-violating terms in the quadratic Lagrange density associated with the effective photon propagator. The covariant dispersion relation is obtained, and conditions for birefringence are discussed. We provide a complete characterization of the coefficients for Lorentz violation for all mass dimensions via a decomposition using spin-weighted spherical harmonics. The resulting nine independent sets of spherical coefficients control birefringence, dispersion, and anisotropy. We discuss the restriction of the general theory to various special models, including among others the minimal Standard-Model Extension, the isotropic limit, the case of vacuum propagation, the nonbirefringent limit, and the vacuum-orthogonal model. The transformation of the spherical coefficients for Lorentz violation between the laboratory frame and the standard Sun-centered frame is provided. We apply the results to various astrophysical observations and laboratory experiments. Astrophysical searches of relevance include studies of birefringence and of dispersion. We use polarimetric and dispersive data from gamma-ray bursts to set constraints on coefficients for Lorentz violation involving operators of dimensions four through nine, and we describe the mixing of polarizations induced by Lorentz and CPT violation in the cosmic-microwave background. Laboratory searches of interest include cavity experiments. We present the theory for searches with cavities, derive the experiment-dependent factors for coefficients in the vacuum-orthogonal model, and predict the corresponding frequency shift for a circular-cylindrical cavity.Comment: 58 pages two-column REVTeX, accepted in Physical Review
    corecore