3,493 research outputs found
Gauge Theory in d=2+1 at High Temperature: Z_N interface
We calculate on the lattice the interface tension in the SU(2) pure gauge
theory in d=2+1 at high temperature. The result is compared to the perturbative
prediction. The agreement confirms applicability of the perturbation theory in
this case.Comment: Lattice'94 contribution, 3pp, uuencoded compressed postscrip
Covalency effects on the magnetism of EuRh2P2
In experiments, the ternary Eu pnictide EuRh2P2 shows an unusual coexistence
of a non-integral Eu valence of about 2.2 and a rather high Neel temperature of
50 K. In this paper, we present a model which explains the non-integral Eu
valence via covalent bonding of the Eu 4f-orbitals to P2 molecular orbitals. In
contrast to intermediate valence models where the hybridization with
delocalized conduction band electrons is known to suppress magnetic ordering
temperatures to at most a few Kelvin, covalent hybridization to the localized
P2 orbitals avoids this suppression. Using perturbation theory we calculate the
valence, the high temperature susceptibility, the Eu single-ion anisotropy and
the superexchange couplings of nearest and next-nearest neighbouring Eu ions.
The model predicts a tetragonal anisotropy of the Curie constants. We suggest
an experimental investigation of this anisotropy using single crystals. From
experimental values of the valence and the two Curie constants, the three free
parameters of our model can be determined.Comment: 9 pages, 5 figures, submitted to J. Phys.: Condens. Matte
Density functional theory for the elastic moduli of a model polymeric solid
We apply a recently developed density functional theory for freely hinged, hard polymeric chains to calculate the elastic moduli of an idealized polymeric solid lacking long-range bond order. We find that for such a model packing effects dominate the elastic behavior of the polymeric solid in a similar way as is the case in the hard-sphere crystal, which we reexamine. Our calculations show that the elastic stiffness of the model polymeric solid is essentially determined by how far one is removed from its melting point. The main role of the chain connectivity is to destabilize the solid relative to the equivalent solid of hard monomers. Comparison of our results with experimental data on semicrystalline polymers shows order-of-magnitude agreement
The Influence of Boron (B), Tin (Sn), Copper (Cu), and Manganese (Mn) on the Microstructure of Spheroidal Graphite Irons
Most spheroidal graphite irons (SGIs) have a matrix consisting of ferrite, pearlite, or a mix of the two. To achieve the desired matrix composition, pearlite promoters such as Mn, Cu, or Sn, are added to the molten metal. Among these elements, Sn is the most potent pearlite promoter. However, each has a different impact on the solidification, graphite precipitation, eutectoid transformation, and ultimately the final structure of the material. Research has shown that B promotes ferrite in fully pearlitic grades where Cu and Mn were used to promote pearlite. The present work investigates the effect of B in SGI with additions of Sn, Cu, and Mn, and the effects of varying amounts of the different pearlite promoters on the matrix composition. The results show that Mn alone at levels of approximately 0.9 wt% is not enough to promote a fully pearlitic matrix, while 0.5 wt% Cu combined with 0.67 wt% Mn is sufficient. Likewise, a fully pearlitic microstructure can be obtained by alloying with 0.06 wt% Sn and 0.67 wt% Mn. B was found to promote ferrite in fully pearlitic SGI alloyed with Sn or Cu. However, in the absence of those elements, B promoted pearlite when alloyed with just Mn. Graphite protrusions were observed on the graphite nodule surface only for B-added alloys with Sn and Cu. In these cases, it is believed B promotes ferrite by changing the growth mechanism of graphite after solidification from spherical to lamellar. However, a different graphite morphology is observed when B is added with just Mn. Thermal analysis data is in agreement with the microstructural observations regarding the ferrite promoting effect of B
Precision neutron interferometric measurement of the nd coherent neutron scattering length and consequences for models of three-nucleon forces
We have performed the first high precision measurement of the coherent
neutron scattering length of deuterium in a pure sample using neutron
interferometry. We find b_nd = (6.665 +/- 0.004) fm in agreement with the world
average of previous measurements using different techniques, b_nd = (6.6730 +/-
0.0045) fm. We compare the new world average for the nd coherent scattering
length b_nd = (6.669 +/- 0.003) fm to calculations of the doublet and quartet
scattering lengths from several modern nucleon-nucleon potential models with
three-nucleon force (3NF) additions and show that almost all theories are in
serious disagreement with experiment. This comparison is a more stringent test
of the models than past comparisons with the less precisely-determined nuclear
doublet scattering length of a_nd = (0.65 +/- 0.04) fm.Comment: 4 pages, 4 figure
Domain walls and perturbation theory in high temperature gauge theory: SU(2) in 2+1 dimensions
We study the detailed properties of Z_2 domain walls in the deconfined high
temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both
by computer simulations of the lattice theory and by one-loop perturbative
calculations. The latter are carried out both in the continuum and on the
lattice. We find that leading order perturbation theory reproduces the detailed
properties of these domain walls remarkably accurately even at temperatures
where the effective dimensionless expansion parameter, g^2/T, is close to
unity. The quantities studied include the surface tension, the action density
profiles, roughening and the electric screening mass. It is only for the last
quantity that we find an exception to the precocious success of perturbation
theory. All this shows that, despite the presence of infrared divergences at
higher orders, high-T perturbation theory can be an accurate calculational
tool.Comment: 75 pages, LaTeX, 14 figure
Costs associated with febrile neutropenia in solid tumor and lymphoma patients - an observational study in Singapore.
BackgroundThe primary objective was to describe the total direct inpatient costs among solid tumor and lymphoma patients with chemotherapy-induced febrile neutropenia (FN) and the factors that were associated with higher direct cost. The secondary objective was to describe the out-of-pocket patient payments and the factors that were associated with higher out-of-pocket patient payments.MethodsThis was a single-center observational study conducted at the largest cancer center in Singapore. All of the adult cancer patients hospitalized due to FN from 2009 to 2012 were studied. The primary outcomes were the total hospital cost and the out-of-pocket patient payments (adjusted by government subsidy) per FN episode. Univariate analysis and multiple linear regression were conducted to identify the factors associated with higher FN costs.ResultsThree hundred and sixty seven adult cancer patients were documented with FN-related hospitalizations. The mean total hospital cost was US3,779-4,607) and the mean out-of-pocket patient payment was US1,976-2,484), per FN episode. The factors associated with a higher total hospital cost were longer length of stay, severe sepsis, and lymphoma as underlying cancer. The out-of-pocket patient payment was positively associated with longer length of stay, severe sepsis, lymphoma diagnosed as underlying cancer, the therapeutic use of granulocyte colony-stimulating factor (GCSF), the private ward class, and younger patients.ConclusionsThe total hospital cost and out-of-pocket patient payments of FN management in lymphoma cases were substantial compared with other solid tumors. Factors associated with a higher FN management cost may be useful for developing appropriate strategies to reduce the cost of FN for cancer patients
- …