27 research outputs found
Novel Cell-Based Method To Detect Shiga Toxin 2 from Escherichia coli O157:H7 and Inhibitors of Toxin Activity▿
Escherichia coli O157:H7 is a leading cause of food-borne illness. This human pathogen produces Shiga toxins (Stx1 and Stx2) which inhibit protein synthesis by inactivating ribosome function. The present study describes a novel cell-based assay to detect Stx2 and inhibitors of toxin activity. A Vero cell line harboring a destabilized variant (half-life, 2 h) of the enhanced green fluorescent protein (d2EGFP) was used to monitor the toxin-induced inhibition of protein synthesis. This Vero-d2EGFP cell line produced a fluorescent signal which could be detected by microscopy or with a plate reader. However, a greatly attenuated fluorescent signal was detected in Vero-d2EGFP cells that had been incubated overnight with either purified Stx2 or a cell-free culture supernatant from Stx1- and Stx2-producing E. coli O157:H7. Dose-response curves demonstrated that the Stx2-induced inhibition of enhanced green fluorescent protein fluorescence mirrored the Stx2-induced inhibition of overall protein synthesis and identified a picogram-per-milliliter threshold for toxin detection. To establish our Vero-d2EGFP assay as a useful tool for the identification of toxin inhibitors, we screened a panel of plant compounds for antitoxin activities. Fluorescent signals were maintained when Vero-d2EGFP cells were exposed to Stx1- and Stx2-containing medium in the presence of either grape seed or grape pomace extract. The antitoxin properties of the grape extracts were confirmed with an independent toxicity assay that monitored the overall level of protein synthesis in cells treated with purified Stx2. These results indicate that the Vero-d2EGFP fluorescence assay is an accurate and sensitive method to detect Stx2 activity and can be utilized to identify toxin inhibitors
O-antigen and virulence profiling of Shiga toxin-producing Escherichia coli by a rapid and cost-effective DNA microarray colorimetric method
Shiga toxin-producing Escherichia coli (STEC) is a leading cause of foodborne illness worldwide. The present study developed the use of DNA microarrays with the ampliPHOX colorimetric method to rapidly detect and genotype STEC strains. A low-density 30-mer oligonucleotide DNA microarray was designed to target O-antigen gene clusters of eleven E. coli serogroups (O26, O45, O91, O103, O104, O111, O113, O121, O128, O145 and O157) that have been associated with the majority of STEC infections. In addition, the DNA microarray targeted eleven virulence genes, encoding adhesins, cytotoxins, proteases, and receptor proteins, which have been implicated in conferring increased ability to cause disease for STEC. Results from the validation experiments demonstrated that this microarray-based colorimetric method allowed for a rapid and accurate genotyping of STEC reference strains from environmental and clinical sources and from distinct geographical locations. Positive hybridization signals were detected only for probes targeting serotype and virulence genes known to be present in the STEC reference strains. Quantification analysis indicated that the mean pixel intensities of the signal for probes targeting O-antigen or virulence genes were at least three times higher when compared to the background. Furthermore, this microarray-based colorimetric method was then employed to genotype a group of E. coli isolates from watershed sediment and animal fecal samples that were collected from an important region for leafy-vegetable production in the central coast of California. The results indicated an accurate identification of O-type and virulence genes in the tested isolates and confirmed that the ampliPHOX colorimetric method with low density DNA microarrays enabled a fast assessment of the virulence potential of STEC using low-cost reagents and instrumentation
Identification of Escherichia coli O157 by Using a Novel Colorimetric Detection Method with DNA Microarrays
Shiga toxin–producing Escherichia coli O157 is a leading cause of foodborne illness worldwide. To evaluate better methods to rapidly detect and genotype E. coli O157 strains, the present study evaluated the use of ampliPHOX, a novel colorimetric detection method based on photopolymerization, for pathogen identification with DNA microarrays. A low-density DNA oligonucleotide microarray was designed to target stx1 and stx2 genes encoding Shiga toxin production, the eae gene coding for adherence membrane protein, and the per gene encoding the O157-antigen perosamine synthetase. Results from the validation experiments demonstrated that the use of ampliPHOX allowed the accurate genotyping of the tested E. coli strains, and positive hybridization signals were observed for only probes targeting virulence genes present in the reference strains. Quantification showed that the average signal-to-noise ratio values ranged from 47.73 ± 7.12 to 76.71 ± 8.33, whereas average signal-to-noise ratio values below 2.5 were determined for probes where no polymer was formed due to lack of specific hybridization. Sensitivity tests demonstrated that the sensitivity threshold for E. coli O157 detection was 100–1000 CFU/mL. Thus, the use of DNA microarrays in combination with photopolymerization allowed the rapid and accurate genotyping of E. coli O157 strains
Comparison of O-Antigen Gene Clusters of All O-Serogroups of Escherichia coli and Proposal for Adopting a New Nomenclature for O-Typing.
Escherichia coli strains are classified based on O-antigens that are components of the lipopolysaccharide (LPS) in the cell envelope. O-antigens are important virulence factors, targets of both the innate and adaptive immune system, and play a role in host-pathogen interactions. Because they are highly immunogenic and display antigenic specificity unique for each strain, O-antigens are the biomarkers for designating O-types. Immunologically, 185 O-serogroups and 11 OX-groups exist for classification. Conventional serotyping for O-typing entails agglutination reactions between the O-antigen and antisera generated against each O-group. The procedure is labor intensive, not always accurate, and exhibits equivocal results. In this report, we present the sequences of 71 O-antigen gene clusters (O-AGC) and a comparison of all 196 O- and OX-groups. Many of the designated O-types, applied for classification over several decades, exhibited similar nucleotide sequences of the O-AGCs and cross-reacted serologically. Some O-AGCs carried insertion sequences and others had only a few nucleotide differences between them. Thus, based on these findings, it is proposed that several of the E. coli O-groups may be merged. Knowledge of the O-AGC sequences facilitates the development of molecular diagnostic platforms that are rapid, accurate, and reliable that can replace conventional serotyping. Additionally, with the scientific knowledge presented, new frontiers in the discovery of biomarkers, understanding the roles of O-antigens in the innate and adaptive immune system and pathogenesis, the development of glycoconjugate vaccines, and other investigations, can be explored
Development of a Robust Method for Isolation of Shiga Toxin-Positive <i>Escherichia coli</i> (STEC) from Fecal, Plant, Soil and Water Samples from a Leafy Greens Production Region in California
<div><p>During a 2.5-year survey of 33 farms and ranches in a major leafy greens production region in California, 13,650 produce, soil, livestock, wildlife, and water samples were tested for Shiga toxin (<i>stx</i>)-producing <i>Escherichia coli</i> (STEC). Overall, 357 and 1,912 samples were positive for <i>E. coli</i> O157:H7 (2.6%) or non-O157 STEC (14.0%), respectively. Isolates differentiated by O-typing ELISA and multilocus variable number tandem repeat analysis (MLVA) resulted in 697 O157:H7 and 3,256 non-O157 STEC isolates saved for further analysis. Cattle (7.1%), feral swine (4.7%), sediment (4.4%), and water (3.3%) samples were positive for <i>E. coli</i> O157:H7; 7/32 birds, 2/145 coyotes, 3/88 samples from elk also were positive. Non-O157 STEC were at approximately 5-fold higher incidence compared to O157 STEC: cattle (37.9%), feral swine (21.4%), birds (2.4%), small mammals (3.5%), deer or elk (8.3%), water (14.0%), sediment (12.3%), produce (0.3%) and soil adjacent to produce (0.6%). <i>stx1</i>, <i>stx2</i> and <i>stx1/stx2</i> genes were detected in 63%, 74% and 35% of STEC isolates, respectively. Subtilase, intimin and hemolysin genes were present in 28%, 25% and 79% of non-O157 STEC, respectively; 23% were of the “Top 6″ O-types. The initial method was modified twice during the study revealing evidence of culture bias based on differences in virulence and O-antigen profiles. MLVA typing revealed a diverse collection of O157 and non-O157 STEC strains isolated from multiple locations and sources and O157 STEC strains matching outbreak strains. These results emphasize the importance of multiple approaches for isolation of non-O157 STEC, that livestock and wildlife are common sources of potentially virulent STEC, and evidence of STEC persistence and movement in a leafy greens production environment.</p></div
Sensitivity of three enrichment methods for recovery of <i>E. coli</i> O157 from environmental samples.
a<p>2 hr incubation at 25<b>°</b>C and <u>8 hr</u> at 42<b>°</b>C with shaking.</p>b<p>Inoculum was <i>E. coli</i> O157 RM1484. Inoculum level was determined by serial plating on LB. <100% of samples positive are shown in <b>boldface</b> type.</p>c<p>2 hr incubation at 25<b>°</b>C and <u>20 hr</u> at 42<b>°</b>C with shaking.</p
Comparison of O-types and colony colors among STEC.
a<p>Serotyped STEC isolates were streaked for single colonies on C-O157 or NT-RA and colony morphology of each were categorized into groups based on both color and colony shape.</p>b<p>Letter designation refers to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065716#pone-0065716-g002" target="_blank">Figure 2</a>.</p>c<p>Boldface numbers indicate most common colony characteristics for each O-type on the indicator agar.</p
Virulence genes and O-antigen genes in a subset of STEC strains.
<p>A subset of strains isolated by the final prototype method (M3; all media) was analyzed by PCR as described previously (Quinones et al, 2012, Frontiers). This provided an opportunity to compare the types of strains isolated from samples exposed to all three media used for isolation of non-O157 STEC.</p