5 research outputs found

    Investigation of the Role That NADH Peroxidase Plays in Oxidative Stress Survival in Group B Streptococcus

    Get PDF
    Macrophages play an important role in defending the host against infections by engulfing pathogens and containing them inside the phagosome, which consists of a harsh microbicidal environment. However, many pathogens have developed mechanisms to survive inside macrophages despite this challenge. Group B Streptococcus (GBS), a leading cause of sepsis and meningitis in neonates, is one such pathogen that survives inside macrophages by withstanding phagosomal stress. Although a few key intracellular survival factors have been identified, the mechanisms by which GBS detoxifies the phagosome are poorly defined. Transcriptional analysis during survival inside macrophages revealed strong upregulation of a putative NADH peroxidase (npx) at 1 and 24 h post-infection. A deletion mutant of npx (Δnpx) was more susceptible to killing by a complex in vitro model of multiple phagosomal biochemical/oxidant stressors or by hydrogen peroxide alone. Moreover, compared to an isogenic wild type GBS strain, the Δnpx strain demonstrated impaired survival inside human macrophages and a reduced capacity to blunt macrophage reactive oxygen species (ROS) production. It is therefore likely that Npx plays a role in survival against ROS production in the macrophage. A more thorough understanding of how GBS evades the immune system through survival inside macrophages will aid in development of new therapeutic measures

    Nitric Oxide Induced stx2 Expression Is Inhibited by the Nitric Oxide Reductase, NorV, in a Clade 8 Escherichia coli O157:H7 Outbreak Strain

    No full text
    Escherichia coli O157:H7 pathogenesis is due to Shiga toxin (Stx) production, though variation in virulence has been observed. Clade 8 strains, for instance, were shown to overproduce Stx and were more common among hemolytic uremic syndrome cases. One candidate gene, norV, which encodes a nitric oxide (NO) reductase found in a clade 8 O157:H7 outbreak strain (TW14359), was thought to impact virulence. Hence, we screened for norV in 303 O157 isolates representing multiple clades, examined stx2 expression following NO exposure in TW14359 for comparison to an isogenic mutant (ΔnorV), and evaluated survival in THP-1 derived macrophages. norV was intact in strains representing clades 6–9, whereas a 204 bp deletion was found in clades 2 and 3. During anaerobic growth, NO induced stx2 expression in TW14359. A similar increase in stx2 expression was observed for the ΔnorV mutant in anaerobiosis, though it was not impaired in its ability to survive within macrophages relative to TW14359. Altogether, these data suggest that NO enhances virulence by inducing Stx2 production in TW14359, and that toxin production is inhibited by NorV encoded by a gene found in most clade 8 strains. The mechanism linked to these responses, however, remains unclear and likely varies across genotypes
    corecore