14 research outputs found

    Spontaneous Neoplastic Transformation of WB-F344 Rat Liver Epithelial Cells

    Get PDF
    Several studies have shown that cultured rat liver epithelial cells transform spontaneously after chronic maintenance in a confluent state in vitro. In the present study, multiple independent lineages of low-passage WB-F344 rat liver epithelial stem-like cells were initiated and subjected in parallel to selection for spontaneous transformation to determine whether spontaneous acquisition of tumorigenicity was the result of events (genetic or epigenetic) that occurred independently and stochastically, or reflected the expression of a pre-existing alteration within the parental WB-F344 cell line. Temporal analysis of the spontaneous acquisition of tumorigenicity by WB-F344 cells demonstrated lineage-specific differences in the time of first expression of the tumorigenic phenotype, frequencies and latencies of tumor formation, and tumor differentiations. Although spontaneously transformed WB-F344 cells produced diverse tumor types (including hepatocellular carcinomas, cholangiocarcinomas, hepatoblastomas, and osteogenic sarcomas), individual lineages yielded tumors with consistent and specific patterns of differentiation. These results provide substantial evidence that the stochastic accumulation of independent transforming events during the selection regimen in vitro were responsible for spontaneous neoplastic transformation of WB-F344 cells. Furthermore, cell lineage commitment to a specific differentiation program was stable with time in culture and with site of transplantation. This is the first report of a cohort of related, but independent, rat liver epithelial cell lines that collectively produce a spectrum of tumor types but individually reproduce a specific tumor type. These cell lines will provide valuable reagents for investigation of the molecular mechanisms involved in the differentiation of hepatic stem-like cells and for examination of potential causal relationships in spontaneously transformed rat liver epithelial cell lines between molecular/cellular alterations and the ability to produce tumors in syngeneic animals

    14-day toxicity studies of tetravalent and pentavalent vanadium compounds in Harlan Sprague Dawley rats and B6C3F1/N mice via drinking water exposure

    Get PDF
    Background: The National Toxicology Program (NTP) performed short-term toxicity studies of tetra- and pentavalent vanadium compounds, vanadyl sulfate and sodium metavanadate, respectively. Due to widespread human exposure and a lack of chronic toxicity data, there is concern for human health following oral exposure to soluble vanadium compounds. Objectives: To compare the potency and toxicological profile of vanadyl sulfate and sodium metavanadate using a short-term in vivo toxicity assay. Methods: Adult male and female Harlan Sprague Dawley (HSD) rats and B6C3F1/N mice, 5 per group, were exposed to vanadyl sulfate or sodium metavanadate, via drinking water, at concentrations of 0, 125, 250, 500, 1000 or 2000 mg/L for 14 days. Water consumption, body weights and clinical observations were recorded throughout the study; organ weights were collected at study termination. Results: Lower water consumption, up to −80% at 2000 mg/L, was observed at most exposure concentrations for animals exposed to either vanadyl sulfate or sodium metavanadate and was accompanied by decreased body weights at the highest concentrations for both compounds. Animals in the 1000 and 2000 mg/L sodium metavanadate groups were removed early due to overt toxicity. Thinness was observed in high-dose animals exposed to either compound, while lethargy and abnormal gait were only observed in vanadate-exposed animals. Conclusions: Based on clinical observations and overt toxicity, sodium metavanadate appears to be more toxic than vanadyl sulfate. Differential toxicity cannot be explained by differences in total vanadium intake, based on water consumption, and may be due to differences in disposition or mechanism of toxicity. Keywords: Pentavalent vanadium, Tetravalent vanadium, Vanadyl sulfate, Sodium metavanadate, B6C3F1/N, Harlan Sprague-Dawley, Short-term toxicity, National Toxicology Progra
    corecore