8 research outputs found

    Image1_Signatures of illness in children requiring unplanned intubation in the pediatric intensive care unit: A retrospective cohort machine-learning study.tiff

    No full text
    Acute respiratory failure requiring the initiation of invasive mechanical ventilation remains commonplace in the pediatric intensive care unit (PICU). Early recognition of patients at risk for respiratory failure may provide clinicians with the opportunity to intervene and potentially improve outcomes. Through the development of a random forest model to identify patients at risk for requiring unplanned intubation, we tested the hypothesis that subtle signatures of illness are present in physiological and biochemical time series of PICU patients in the early stages of respiratory decompensation. We included 116 unplanned intubation events as recorded in the National Emergency Airway Registry for Children in 92 PICU admissions over a 29-month period at our institution. We observed that children have a physiologic signature of illness preceding unplanned intubation in the PICU. Generally, it comprises younger age, and abnormalities in electrolyte, hematologic and vital sign parameters. Additionally, given the heterogeneity of the PICU patient population, we found differences in the presentation among the major patient groups – medical, cardiac surgical, and non-cardiac surgical. At four hours prior to the event, our random forest model demonstrated an area under the receiver operating characteristic curve of 0.766 (0.738 for medical, 0.755 for cardiac surgical, and 0.797 for non-cardiac surgical patients). The multivariable statistical models that captured the physiological and biochemical dynamics leading up to the event of urgent unplanned intubation in a PICU can be repurposed for bedside risk prediction.</p

    Image3_Signatures of illness in children requiring unplanned intubation in the pediatric intensive care unit: A retrospective cohort machine-learning study.jpg

    No full text
    Acute respiratory failure requiring the initiation of invasive mechanical ventilation remains commonplace in the pediatric intensive care unit (PICU). Early recognition of patients at risk for respiratory failure may provide clinicians with the opportunity to intervene and potentially improve outcomes. Through the development of a random forest model to identify patients at risk for requiring unplanned intubation, we tested the hypothesis that subtle signatures of illness are present in physiological and biochemical time series of PICU patients in the early stages of respiratory decompensation. We included 116 unplanned intubation events as recorded in the National Emergency Airway Registry for Children in 92 PICU admissions over a 29-month period at our institution. We observed that children have a physiologic signature of illness preceding unplanned intubation in the PICU. Generally, it comprises younger age, and abnormalities in electrolyte, hematologic and vital sign parameters. Additionally, given the heterogeneity of the PICU patient population, we found differences in the presentation among the major patient groups – medical, cardiac surgical, and non-cardiac surgical. At four hours prior to the event, our random forest model demonstrated an area under the receiver operating characteristic curve of 0.766 (0.738 for medical, 0.755 for cardiac surgical, and 0.797 for non-cardiac surgical patients). The multivariable statistical models that captured the physiological and biochemical dynamics leading up to the event of urgent unplanned intubation in a PICU can be repurposed for bedside risk prediction.</p

    Image2_Signatures of illness in children requiring unplanned intubation in the pediatric intensive care unit: A retrospective cohort machine-learning study.pdf

    No full text
    Acute respiratory failure requiring the initiation of invasive mechanical ventilation remains commonplace in the pediatric intensive care unit (PICU). Early recognition of patients at risk for respiratory failure may provide clinicians with the opportunity to intervene and potentially improve outcomes. Through the development of a random forest model to identify patients at risk for requiring unplanned intubation, we tested the hypothesis that subtle signatures of illness are present in physiological and biochemical time series of PICU patients in the early stages of respiratory decompensation. We included 116 unplanned intubation events as recorded in the National Emergency Airway Registry for Children in 92 PICU admissions over a 29-month period at our institution. We observed that children have a physiologic signature of illness preceding unplanned intubation in the PICU. Generally, it comprises younger age, and abnormalities in electrolyte, hematologic and vital sign parameters. Additionally, given the heterogeneity of the PICU patient population, we found differences in the presentation among the major patient groups – medical, cardiac surgical, and non-cardiac surgical. At four hours prior to the event, our random forest model demonstrated an area under the receiver operating characteristic curve of 0.766 (0.738 for medical, 0.755 for cardiac surgical, and 0.797 for non-cardiac surgical patients). The multivariable statistical models that captured the physiological and biochemical dynamics leading up to the event of urgent unplanned intubation in a PICU can be repurposed for bedside risk prediction.</p

    Family Presence During Pediatric Tracheal Intubations

    No full text
    Family-centered care, which supports family presence (FP) during procedures, is now a widely accepted standard at health care facilities that care for children. However, there is a paucity of data regarding the practice of FP during tracheal intubation (TI) in pediatric intensive care units (PICUs). Family presence during procedures in PICUs has been advocated. To describe the current practice of FP during TI and evaluate the association with procedural and clinician (including physician, respiratory therapist, and nurse practitioner) outcomes across multiple PICUs. Prospective cohort study in which all TIs from July 2010 to March 2014 in the multicenter TI database (National Emergency Airway Registry for Children [NEAR4KIDS]) were analyzed. Family presence was defined as a family member present during TI. This study included all TIs in patients younger than 18 years in 22 international PICUs. Family presence and no FP during TI in the PICU. The percentage of FP during TIs. First attempt success rate, adverse TI-associated events, multiple attempts (≥ 3), oxygen desaturation (oxygen saturation as measured by pulse oximetry <80%), and self-reported team stress level. A total of 4969 TI encounters were reported. Among those, 81% (n = 4030) of TIs had documented FP status (with/without). The median age of participants with FP was 2 years and 1 year for those without FP. The average percentage of TIs with FP was 19% and varied widely across sites (0%-43%; P < .001). Tracheal intubations with FP (vs without FP) were associated with older patients (median, 2 years vs 1 year; P = .04), lower Paediatric Index of Mortality 2 score, and pediatric resident as the first airway clinician (23%, n = 179 vs 18%, n = 584; odds ratio [OR], 1.4; 95% CI, 1.2-1.7). Tracheal intubations with FP and without FP were no different in the first attempt success rate (OR, 1.00; 95% CI, 0.85-1.18), adverse TI-associated events (any events: OR, 1.06; 95% CI, 0.85-1.30 and severe events: OR, 1.04; 95% CI, 0.75-1.43), multiple attempts (≥ 3) (OR, 1.03; 95% CI, 0.82-1.28), oxygen desaturation (oxygen saturation <80%) (OR, 0.97; 95% CI, 0.80-1.18), or self-reported team stress level (OR, 1.09; 95% CI, 0.92-1.31). This result persisted after adjusting for patient and clinician confounders. Wide variability exists in FP during TIs across PICUs. Family presence was not associated with first attempt success, adverse TI-associated events, oxygen desaturation (<80%), or higher team stress level. Our data suggest that FP during TI can safely be implemented as part of a family-centered care model in the PICU

    Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE):an international, observational study

    No full text
    Background: Paediatric acute respiratory distress syndrome (PARDS) is associated with high mortality in children, but until recently no paediatric-specific diagnostic criteria existed. The Pediatric Acute Lung Injury Consensus Conference (PALICC) definition was developed to overcome limitations of the Berlin definition, which was designed and validated for adults. We aimed to determine the incidence and outcomes of children who meet the PALICC definition of PARDS. Methods: In this international, prospective, cross-sectional, observational study, 145 paediatric intensive care units (PICUs) from 27 countries were recruited, and over a continuous 5 day period across 10 weeks all patients were screened for enrolment. Patients were included if they had a new diagnosis of PARDS that met PALICC criteria during the study week. Exclusion criteria included meeting PARDS criteria more than 24 h before screening, cyanotic heart disease, active perinatal lung disease, and preparation or recovery from a cardiac intervention. Data were collected on the PICU characteristics, patient demographics, and elements of PARDS (ie, PARDS risk factors, hypoxaemia severity metrics, type of ventilation), comorbidities, chest imaging, arterial blood gas measurements, and pulse oximetry. The primary outcome was PICU mortality. Secondary outcomes included 90 day mortality, duration of invasive mechanical and non-invasive ventilation, and cause of death. Findings: Between May 9, 2016, and June 16, 2017, during the 10 study weeks, 23 280 patients were admitted to participating PICUs, of whom 744 (3·2%) were identified as having PARDS. 95% (708 of 744) of patients had complete data for analysis, with 17% (121 of 708; 95% CI 14–20) mortality, whereas only 32% (230 of 708) of patients met Berlin criteria with 27% (61 of 230) mortality. Based on hypoxaemia severity at PARDS diagnosis, mortality was similar among those who were non-invasively ventilated and with mild or moderate PARDS (10–15%), but higher for those with severe PARDS (33% [54 of 165; 95% CI 26–41]). 50% (80 of 160) of non-invasively ventilated patients with PARDS were subsequently intubated, with 25% (20 of 80; 95% CI 16–36) mortality. By use of PALICC PARDS definition, severity of PARDS at 6 h after initial diagnosis (area under the curve [AUC] 0·69, 95% CI 0·62–0·76) discriminates PICU mortality better than severity at PARDS diagnosis (AUC 0·64, 0·58–0·71), and outperforms Berlin severity groups at 6 h (0·64, 0·58–0·70; p=0·01). Interpretation: The PALICC definition identified more children as having PARDS than the Berlin definition, and PALICC PARDS severity groupings improved the stratification of mortality risk, particularly when applied 6 h after PARDS diagnosis. The PALICC PARDS framework should be considered for use in future epidemiological and therapeutic research among children with PARDS. Funding: University of Southern California Clinical Translational Science Institute, Sainte Justine Children's Hospital, University of Montreal, Canada, Réseau en Santé Respiratoire du Fonds de Recherche Quebec-Santé and Children's Hospital Los Angeles, Department of Anesthesiology and Critical Care Medicine
    corecore