17 research outputs found

    Oxidative Stress: Noxious but Also Vital

    Get PDF
    The imbalance between reactive oxygen species (ROS) production and antioxidant defenses determines the condition called oxidative stress. When there is an increase in ROS production or a decrease in the antioxidant defenses, this systemic antioxidant/pro-oxidant imbalance may lead to the accumulation of oxidative damage, which, in turn, may lead to a modification of biomolecules. These consist of reactions resulting in protein adducts, DNA oxidation, and formation of lipid peroxides, which, in turn, reduce the cellular functional capacity and increase the risk of disease development. The body has natural scavenging systems against free radicals and other reactive species. However, sometimes the endogenous antioxidant capacity is exceeded by the production of ROS. When this occurs, exogenous antioxidants exert important function for the human health. These bioactive compounds act preventing and neutralizing the formation of new reactive species and free radicals. In some cases, an increase of ROS can help the host to resolve an infection or even to control the tumor growth. Finally, the levels of ROS can be perceived by signal transduction pathways involving known targets (i.e., p53, Ras, and NF-κB) and regulate physiopathological events such as the cellular cycle, apoptosis, and inflammation

    Aspectos da prolifera??o celular na infec??o por HTLV-I e sua rela??o com o quadro cl?nico e a sensibilidade aos glicocortic?ides

    No full text
    Made available in DSpace on 2015-04-14T14:50:56Z (GMT). No. of bitstreams: 1 412832.PDF: 399603 bytes, checksum: 31eb2515ec0e5f58e8fa88f141783a51 (MD5) Previous issue date: 2009-04-30Linf?citos de pacientes infectados com o v?rus linfotr?pico de c?lulas T humanas tipo I (HTLV-I) podem apresentar anergia a estimula??o e simultaneamente resist?ncia relativa ao efeito imunossupressor dos glicocortic?ides (GCs). Isto sugere que estas vari?veis s?o influenciadas por vias de sinaliza??o em comum. As quinases ativadas por mit?genos (MAPKs), subtipos de linf?citos e citocinas s?o candidatos potenciais para estes efeitos. Portanto, neste trabalho n?s avaliamos o envolvimento das (i) MAPKs p38 e ERK, (ii) subpopula??es de linf?citos (iii) e citocinas na anergia e na imunomodula??o induzida por GCs. Vinte e um portadores assintom?ticos (AC), dezenove pacientes com mielopatia associada ao HTLV-I / paraparesia esp?stica tropical (HAM/TSP) e vinte e um indiv?duos controles n?o infectados fizeram parte deste estudo. As c?lulas mononucleares do sangue perif?rico destes indiv?duos foram isoladas e mantidas em cultura para a avalia??o da prolifera??o e da sensibilidade a dexametasona. A express?o das fosfo-MAPKs, dos marcadores extracelulares e das citocinas foi avaliada por citometria de fluxo. Pacientes HAM/TSP apresentaram uma raz?o p38/ERK elevada que influenciou na baixa resposta aos mit?genos e na alta sensibilidade aos GCs nestes indiv?duos. Eles tamb?m apresentaram propor??es elevadas de c?lulas T ativadas e reguladoras CD8+CD28- que correlacionaram-se negativamente com as respostas aos mit?genos. Esses resultados sugerem que muitos mecanismos podem estar envolvidos na imunomodula??o relacionada a infec??o pelo HTLVI e na altera??o da sensibilidade aos GCs

    Mechanisms of bradykinin in neural differentiation

    No full text
    Durante o desenvolvimento do sistema nervoso, as células têm a tarefa de proliferar, migrar, diferenciar, morrer ou amadurecer de modo altamente preciso para formar estruturas complexas. Tal precisão é alcançada em decorrência da interação perfeita entre as células que se comunicam por meio de mensageiros químicos no ambiente extracelular. Nesse contexto, nosso grupo tem reportado o envolvimento da bradicinina (BK) em processos do desenvolvimento neural. Recentemente, observou-se que a BK desempenha um papel importante na determinação do destino neural, favorecendo a neurogênese em detrimento da gliogênese em diversos modelos de diferenciação, além de potencializar a migração celular observada no modelo de neuroesferas de rato (Trujillo et al, 2012). Essas descobertas motivaram, como objetivo geral dessa tese, a investigação dos mecanismos subjacentes à BK que determinam seus efeitos. Dessa forma, o principal modelo de diferenciação utilizado foi as células precursoras neurais (CPNs) isoladas do telencéfalo de embriões de camundongos. Estas células proliferam na presença dos fatores de crescimento (GFs) EGF + FGF2, mantendo-se multipotentes e formando as neuroesferas, ao passo que migram e diferenciam em neurônios e glias pela remoção desses GFs, com boa proximidade aos eventos do desenvolvimento do cortex in vivo. Como resultados do presente trabalho, observou-se, inicialmente, que a BK também influencia efetivamente na diferenciação neural no modelo de CPNs murinas. Ao término da diferenciação, observou-se que esta cinina favoreceu a migração e promoveu o enriquecimento neuronal, evidenciado pelo aumento da expressão das proteínas β3-Tubulina e MAP2. Constatou-se também, que se observa uma baixa taxa de proliferação ao término da diferenciação na presença de BK (Trujillo et al, 2012), em consequência da grande proporção de neurônios em cultura estimulada por esta cinina. Esta relação causal foi evidenciada pelo ensaio de incorporação de EdU e concomitante imuno-detecção dos marcadores β3-Tubulina, GFAP e Nestina. Fatores que promovem a neurogênese podem promovê-la suprimindo a proliferação celular em CPNs indiferenciadas, mais especificamente, alongando a fase G1 do ciclo celular que resulta na divisão de diferenciação. Assim, investigou-se também se a BK influencia nesse processo. Análises por citometria de fluxo demonstraram que esta cinina suprimiu a proliferação estimulada pelos GFs, levando ao acúmulo de células na fase G1 do ciclo celular. Esse acúmulo não provém do bloqueio do ciclo, uma vez que se observam grandes proporções de células nas fases subsequentes à G1, indicando que essa fase foi apenas prolongada pela BK e, assim, corroboraria no favorecimento da neurogênese. Outra face dos mecanismos adjacentes à BK para seus efeitos na diferenciação neural se refere às vias de sinalização disparadas por esta cinina. Observou-se que a BK induz a produção de AMPc por intermédio de proteínas G sensíveis à toxina pertussis (TP) (provavelmente através da subunidade βγ de proteínas Gi) e promove a mobilização de cálcio dos estoques intracelulares, evidenciando o envolvimento da família de proteínas Gq. Esses resultados sugerem que o receptor B2 de cinina acopla-se tanto às proteínas Gi quanto às proteínas Gq em CPNs. A exposição dessas células à BK também ativou as vias da PI3K/Akt e da MAPK p38, mas não influenciou na ativação de STAT3 e JNK. Destaca-se o potencial da rota da MAPK ERK como uma das principais cascatas responsáveis por decodificar sinais de mensageiros externos em respostas celulares. O tratamento com BK em CPNs ativou a ERK por tempo prolongado e estimulou sua translocação para o núcleo. O efeito de BK na glio- e neurogênese de CPNs foi dependente da atividade de ERK, porque o bloqueio farmacológico dessa enzima impediu esse efeito de BK. Por outro lado, o favorecimento da migração induzido por esta cinina foi dependente da atividade da p38, enquanto, o seu efeito antiproliferativo foi condicionado à atividade das suas duas MAPKs, ERK e p38. Além disso, a via da PI3K/Akt ativada por BK não influenciou nos três eventos avaliados. Finalmente, utilizou-se nessa tese uma abordagem reducionista da diferenciação, porém amplamente utilizada por estudos mecanísticos de neurogênese, as células PC12. Assim, observou-se que a BK também ativa a ERK por tempo prolongado e com translocação nuclear, sendo que tal forma de ativação dessa quinase é proposta na literatura como necessária e suficiente para induzir a neurogênese dessas células. Demonstrou-se ainda que o bloqueio apenas da ativação sustentada de ERK, pela inibição das atividades das PKCs clássicas, impede o favorecimento da neurogênese por BK em células PC12. Juntos, esses resultados contribuem para elucidação dos mecanismos de ação da BK na regulação da diferenciação neural, colaborando para melhor entender esse processo e prevendo possíveis aplicações em terapias de reparo neuronal em pacientes com doenças, por exemplo, de Parkinson, Alzheimer, Esclerose Múltipla e lesões isquêmicas.During CNS development cells perform the task of proliferating, migrating, differentiating, dying or maturing in highly accurate patterns. Such accuracy is reached as a result of the perfect interaction among the cells that constantly communicate with each other through cell-cell contact or through chemical messengers present in the extracellular medium. In this context, our group has reported the involvement of bradykinin (BK) in neural differentiation of stem cell models (Trujillo et al, 2012). Recently, it has been observed that BK plays an important role in determining neural destination, favoring neurogenesis over gliogenesis in several models of differentiation, besides potentializing cell migration observed in the model of rat neurospheres. These discoveries have motivated, as the general objective of this thesis, the investigation of the mechanisms underlying BK-promoted effects on neural differentiation using neural precursor cells (NPCs) isolated from the telencephalon of mice embryos. These cells proliferate in the presence of growth factors (GFs) EGF + FGF2, remaining multipotent and forming neurospheres, while they migrate and differentiate in neurons and glias following removal of these GFs, resembling in simplified conditions events of the development of the cortex in vivo. As results of the present thesis, it was initially observed that BK also effectively influences neural differentiation fate of the mouse NPC model. This kinin favored migration and promoted neuronal enrichment, evidenced by increased expression of β3-Tubulin and MAP2 marker proteins. Moreover, proliferation rates were largely decreased following differentiation in the presence of BK (Trujillo et al, 2012), due to the large proportion of neurons in the culture stimulated by this kinin. This causal relation was evidenced by the EdU incorporation assay and the concomitant immunodetection rates of β3- Tubulin, GFAP and Nestin markers. Factors which promote neurogenesis can promote it by suppressing cell proliferation in undifferentiated NPCs, more specifically, prolonging the G1 phase of the cell cycle that result in the division of differentiation. Thus, it was further investigated whether BK influences this process. Flow cytometry analyses showed that this kinin suppressed the proliferation stimulated by GFs, resulting in the accumulation of cells in the G1 phase of the cell cycle. This accumulation is not caused by a cycle block, since wide proportions of cells are observed in phases subsequent to the G1, indicating that this phase was only prolonged by BK, thus corroborating for favoring neurogenesis. Another aspect of the mechanisms adjacent to BK for its effects on neural differentiation refers to the signaling pathways triggered by this kinin. Here, we show that the kinin B2 receptor couples to both Gi and Gq proteins in NPCs. BK induced the production of intracellular cAMP by activation of G proteins sensitive to pertussis toxin (PT) (probably through βγ subunit of Gi proteins) and promoted the mobilization of calcium from intracellular stocks, demonstrating the involvement of YM-254890-sensitive Gq proteins. Exposure of these cells to BK also activated PI3K/Akt and MAPK p38 pathways, but did not affect the activation of STAT3 and JNK. It is important to note the potential MAPK-ERK route as one of the main cascades responsible for decoding signals from external messengers into cellular responses. NPC treatment with BK activated ERK for prolonged time and stimulated its translocation into the nucleus. The effect of BK on glio- and neurogenesis of NPCs depended plainly on ERK activity, because the pharmacological blockade of this enzyme prevented the BK-exerted effects. On the other hand, the favoring of migration induced by this kinin was dependent on p38 activity, while its antiproliferative effect was conditioned to the activity of both the MAPKs ERK and p38. In addition, the PI3K/Akt pathway activated by BK did not affect any of the three evaluated events. Finally, we used in this thesis a reductionist approach of differentiation based on the use of PC12 cells, which has been widely used for mechanistic studies of neurogenesis. Thus, it was observed that BK also activated ERK for prolonged time and with nuclear translocation, considering that such form of kinase activation is proposed in the literature as necessary and sufficient to induce neurogenesis in these cells. This study also demonstrated that blockade only of the sustained ERK activation, through the inhibition of the activity of classic PKCs, prevents the favoring of neurogenesis by BK in PC12 cells. Together, these results compose novel mechanisms of action of BK on events of neural development in vitro, contributing to the better understanding of this process and foreseeing possible applications in the future for neuronal repair strategie

    Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation

    Get PDF
    During brain development, cells proliferate, migrate and differentiate in highly accurate patterns. In this context, published results indicate that bradykinin functions in neural fate determination, favoring neurogenesis and migration. However, mechanisms underlying bradykinin function are yet to be explored. Our findings indicate a previously unidentified role for bradykinin action in inducing neurongenerating division in vitro and in vivo, given that bradykinin lengthened the G1-phase of the neural progenitor cells (NPC) cycle and increased TIS21 (also known as PC3 and BTG2) expression in hippocampus from newborn mice. This role, triggered by activation of the kinin-B2 receptor, was conditioned by ERK1/2 activation. Moreover, immunohistochemistry analysis of hippocampal dentate gyrus showed that the percentage of Ki67+ cells markedly increased in bradykinin-treated mice, and ERK1/2 inhibition affected this neurogenic response. The progress of neurogenesis depended on sustained ERK phosphorylation and resulted in ERK1/2 translocation to the nucleus in NPCs and PC12 cells, changing expression of genes such as Hes1 and Ngn2 (also known as Neurog2). In agreement with the function of ERK in integrating signaling pathways, effects of bradykinin in stimulating neurogenesis were reversed following removal of protein kinase C (PKC)-mediated sustained phosphorylation

    Interactions between the NO-Citrulline Cycle and Brain-derived Neurotrophic Factor in Differentiation of Neural Stem Cells

    No full text
    The diffusible messenger NO plays multiple roles in neuroprotection, neurodegeneration, and brain plasticity. Argininosuccinate synthase (AS) is a ubiquitous enzyme in mammals and the key enzyme of the NO-citrulline cycle, because it provides the substrate L-arginine for subsequent NO synthesis by inducible, endothelial, and neuronal NO synthase (NOS). Here, we provide evidence for the participation of AS and of the NO-citrulline cycle in the progress of differentiation of neural stem cells (NSC) into neurons, astrocytes, and oligodendrocytes. AS expression and activity and neuronal NOS expression, as well as L-arginine and NOx production, increased along neural differentiation, whereas endothelial NOS expression was augmented in conditions of chronic NOS inhibition during differentiation, indicating that this NOS isoform is amenable to modulation by extracellular cues. AS and NOS inhibition caused a delay in the progress of neural differentiation, as suggested by the decreased percentage of terminally differentiated cells. On the other hand, BDNF reversed the delay of neural differentiation of NSC caused by inhibition of NOx production. Alikely cause is the lack of NO, which up-regulated p75 neurotrophin receptor expression, a receptor required for BDNF-induced differentiation of NSC. We conclude that the NO-citrulline cycle acts together with BDNF for maintaining the progress of neural differentiation.Brazilian Fundacao de Amparo a Pesquisa do Estado de Sao PauloBrazilian Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [06/61285-9]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of BrazilConselho Nacional de Desenvolvimento Cientifico e Tecnologico of BrazilFundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao PauloConselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e Tecnologic

    Ecto-5’-nucleotidase overexpression reduces tumor growth in a xenograph medulloblastoma model

    Get PDF
    Background Ecto-5’-nucleotidase/CD73 (ecto-5’-NT) participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP) into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5’-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB) is the most common brain tumor of the cerebellum and affects mainly children. Materials and Methods The effects of ecto-5’-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude) 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified. Results The human MB cell line D283, transfected with ecto-5’-NT (D283hCD73), revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5’-NT. Conclusion This work suggests that ecto-5’-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5’-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy

    Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation

    Get PDF
    During brain development, cells proliferate, migrate and differentiate in highly accurate patterns. In this context, published results indicate that bradykinin functions in neural fate determination, favoring neurogenesis and migration. However, mechanisms underlying bradykinin function are yet to be explored. Our findings indicate a previously unidentified role for bradykinin action in inducing neurongenerating division in vitro and in vivo, given that bradykinin lengthened the G1-phase of the neural progenitor cells (NPC) cycle and increased TIS21 (also known as PC3 and BTG2) expression in hippocampus from newborn mice. This role, triggered by activation of the kinin-B2 receptor, was conditioned by ERK1/2 activation. Moreover, immunohistochemistry analysis of hippocampal dentate gyrus showed that the percentage of Ki67+ cells markedly increased in bradykinin-treated mice, and ERK1/2 inhibition affected this neurogenic response. The progress of neurogenesis depended on sustained ERK phosphorylation and resulted in ERK1/2 translocation to the nucleus in NPCs and PC12 cells, changing expression of genes such as Hes1 and Ngn2 (also known as Neurog2). In agreement with the function of ERK in integrating signaling pathways, effects of bradykinin in stimulating neurogenesis were reversed following removal of protein kinase C (PKC)-mediated sustained phosphorylation

    Ecto-5’-nucleotidase overexpression reduces tumor growth in a xenograph medulloblastoma model

    Get PDF
    Background Ecto-5’-nucleotidase/CD73 (ecto-5’-NT) participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP) into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5’-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB) is the most common brain tumor of the cerebellum and affects mainly children. Materials and Methods The effects of ecto-5’-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude) 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified. Results The human MB cell line D283, transfected with ecto-5’-NT (D283hCD73), revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5’-NT. Conclusion This work suggests that ecto-5’-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5’-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy
    corecore