4,142 research outputs found

    Surveys, Astrometric Follow-up & Population Statistics

    Full text link
    Asteroid surveys are the backbone of asteroid science, and with this in mind we begin with a broad review of the impact of asteroid surveys on our field. We then provide a brief history of asteroid discoveries so as to place contemporary and future surveys in perspective. Surveys in the United States have discovered the vast majority of the asteroids and this dominance has been consolidated since the publication of Asteroids III. Our descriptions of the asteroid surveys that have been operational since that time are focussed upon those that have contributed the vast majority of asteroid observations and discoveries. We also provide some insight into upcoming next-generation surveys that are sure to alter our understanding of the small bodies in the inner solar system and provide evidence to untangle their complicated dynamical and physical histories. The Minor Planet Center, the nerve center of the asteroid discovery effort, has improved its operations significantly in the past decade so that it can manage the increasing discovery rate, and ensure that it is well-placed to handle the data rates expected in the next decade. We also consider the difficulties associated with astrometric follow-up of newly identified objects. It seems clear that both of these efforts must operate in new modes in order to keep pace with expected discovery rates of next-generation ground- and space-based surveys.Comment: Chapter to appear in the book ASTEROIDS IV, (University of Arizona Press) Space Science Series, edited by P. Michel, F. DeMeo and W. Bottk

    A Deep Generative Model for Fragment-Based Molecule Generation

    Full text link
    Molecule generation is a challenging open problem in cheminformatics. Currently, deep generative approaches addressing the challenge belong to two broad categories, differing in how molecules are represented. One approach encodes molecular graphs as strings of text, and learns their corresponding character-based language model. Another, more expressive, approach operates directly on the molecular graph. In this work, we address two limitations of the former: generation of invalid and duplicate molecules. To improve validity rates, we develop a language model for small molecular substructures called fragments, loosely inspired by the well-known paradigm of Fragment-Based Drug Design. In other words, we generate molecules fragment by fragment, instead of atom by atom. To improve uniqueness rates, we present a frequency-based masking strategy that helps generate molecules with infrequent fragments. We show experimentally that our model largely outperforms other language model-based competitors, reaching state-of-the-art performances typical of graph-based approaches. Moreover, generated molecules display molecular properties similar to those in the training sample, even in absence of explicit task-specific supervision

    Updated analysis of the dynamical relation between asteroid 2003 EH1 and comets C/1490 Y1 and C/1385 U1

    Full text link
    The asteroid 2003 EH1, proposed as the parent body of the Quadrantid meteor shower, is thought to be the remnant of a past cometary object, tentatively identified with the historical comets C/1490 Y1 and C/1385 U1. In the present work we use recovery astrometry to extend the observed arc of 2003 EH1 from 10 months to about 5 years, enough to exclude the proposed direct relationship of the asteroid with both of the comets.Comment: Submitted to Monthly Notices of the RAS Letters Updated with a new table and other minor change

    Evidence for a quadruplex structure in the polymorphic hs1.2 enhancer of the immunoglobulin heavy chain 3’ regulatory regions and its conservation in mammals

    Get PDF
    Regulatory regions in the genome can act through a variety of mechanisms that range from the occurrence of histone modifications to the presence of protein-binding loci for self-annealing sequences. The final result is often the induction of a conformational change of the DNA double helix, which alters the accessibility of a region to transcription factors and consequently gene expression. A similar to 300 kb regulatory region on chromosome 14 at the 3' end (3'RR) of immunoglobulin (Ig) heavy-chain genes shows very peculiar features, conserved in mammals, including enhancers and transcription factor binding sites. In primates, the 3'RR is present in two copies, both having a central enhancer named hs1.2. We previously demonstrated the association between different hs1.2 alleles and Ig plasma levels in immunopathology. Here, we present the analysis of a putative G-quadruplex structure (tetraplex) consensus site embedded in a variable number tandem repeat (one to four copies) of hs1.2 that is a distinctive element among the enhancer alleles, and an investigation of its three-dimensional structure using bioinformatics and spectroscopic approaches. We suggest that both the role of the enhancer and the alternative effect of the hs1.2 alleles may be achieved through their peculiar three-dimensional-conformational rearrangement

    Terminal differentiation of adult hippocampal progenitor cells is a step functionally dissociable from proliferation and is controlled by Tis21, Id3 and NeuroD2

    Get PDF
    Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rat
    • …
    corecore