27 research outputs found

    Inducing Water Productivity from Snow Cover for Sustainable Water Management in Ibrahim River Basin, Lebanon

    Get PDF
    International audienceThe aim of this paper is to explore the effects and linkages between snow cover areas, distribution, probability and measured water discharge along east Mediterranean coastal watershed using moderate-resolution satellite images (MODIS-Terra). The Nahr Ibrahim River is a typical Lebanese watershed with an area of 326 km2 stretching between the sea and mountainous terrain to the east. The largest snow cover often exists in January-February with snow-free conditions between June and November. Image analysis enabled to analyze the temporal variability of the mean and maximum monthly areas of snow cover between 2000 and 2013. Snow cover dynamics were compared with the discharge from main springs (Afqa and Rouaiss) feeding the river and the probability of snow cover was estimated. The mean monthly snow cover, snow melting rates and springs discharge were found to be in direct relationship. In addition, the measured water discharge at the river mouth was found to be higher than the discharge of the two main feeding springs. This indicates a contribution of groundwater to the stream flow, which is again in direct connection with snow melting at the upper bordering slopes and probably from neighboring watersheds. Considering the characteristics of the mountainous rocks (i.e. Sinkholes, fissured and karstified limestone), the pedo-climatic and land cover conditions affect the hydrological regime which is directly responding to the area and temporal distribution of snow cover, which appears after two months from snowing events. This is reflected on water productivity and related disciplines (Agricultural yield, floods). This study highlights the potential of satellite snow detection over the watershed to estimate snow cover duration curve, forecast the stream flow regime and volume for better water management and flood risk preparedness

    In vitro characterization of adipose stem cells non-enzymatically extracted from the thigh and abdomen

    Get PDF
    Autologous fat grafting is a surgical technique in which adipose tissue is transferred from one area of the body to another, in order to reconstruct or regenerate damaged or injured tissues. Before reinjection, adipose tissue needs to be purified from blood and cellular debris to avoid inflammation and preserve the graft viability. To perform this purification, different enzymatic and mechanical methods can be used. In this study, we characterized in vitro the product of a closed automatic device based on mechanical disaggregation, named Rigenera\uae, focusing on two sites of adipose tissue harvesting. At first, we optimized the Rigenera\uae operating timing, demonstrating that 60 s of treatment allows a higher cellular yield, in terms of the cell number and growth rate. This result optimizes the mechanical disaggregation and it can increase the clinical efficiency of the final product. When comparing the extracted adipose samples from the thigh and abdomen, our results showed that the thigh provides a higher number of mesenchymal-like cells, with a faster replication rate and a higher ability to form colonies. We can conclude that by collecting adipose tissue from the thigh and treating it with the Rigenera\uae device for 60 s, it is possible to obtain the most efficient product

    Nanoparticles exhibiting self-regulating temperature as innovative agents for Magnetic Fluid Hyperthermia

    Get PDF
    During the last few years, for therapeutic purposes in oncology, considerable attention has been focused on a method called magnetic fluid hyperthermia (MFH) based on local heating of tumor cells. In this paper, an innovative, promising nanomaterial, M48 composed of iron oxide-based phases has been tested. M48 shows self-regulating temperature due to the observable second order magnetic phase transition from ferromagnetic to paramagnetic state. A specific hydrophilic coating based on both citrate ions and glucose molecules allows high biocompatibility of the nanomaterial in biological matrices and its use in vivo. MFH mediator efficiency is demonstrated in vitro and in vivo in breast cancer cells and tumors, confirming excellent features for biomedical application. The temperature increase, up to the Curie temperature, gives rise to a phase transition from ferromagnetic to paramagnetic state, promoting a shortage of the r2 transversal relaxivity that allows a switch in the contrast in Magnetic Resonance Imaging (MRI). Combining this feature with a competitive high transversal (spin-spin) relaxivity, M48 paves the way for a new class of temperature sensitive T2 relaxing contrast agents. Overall, the results obtained in this study prepare for a more affordable and tunable heating mechanism preventing the damages of the surrounding healthy tissues and, at the same time, allowing monitoring of the temperature reached

    A new data assimilation technique based on ensemble Kalman filter and Brownian bridges: An application to Richards’ equation

    No full text
    In this paper a new data assimilation technique is proposed which is based on the ensemble Kalman filter (EnKF). Such a technique will be effective if few observations of a dynamical system are available and a large model error occurs. The idea is to acquire a fine grid of synthetic observations in two steps: (1) first we interpolate the real observations with suitable polynomial curves; (2) then we estimate the relative measurement errors by means of Brownian bridges. This technique has been tested on the Richards’ equation, which governs the water flow in unsaturated soils, where a large model error has been introduced by solving the Richards’ equation by means of an explicit numerical scheme. The application of this technique to some synthetic experiments has shown improvements with respect to the classical ensemble Kalman filter, in particular for problems with a large model error

    A new data assimilation technique based on EnKF and Brownian bridges in the context of Richards' equation

    No full text
    A new data abimilation technique is presented, based on the ensemble Kalman filter (EnKF), and makes particularly sense whenever few observations in time are available, and a stiff evolutionary equation such as the Richards' equation is integrated forward in time. Because of the Monte Carlo nature of EnKF, a cheap numerical method would be conve-nient to integrate the Richards'equation, thus a lot of observations are desiderable in order to frequently correct the numerical solution. Nevertheleb, abuming to have few observations in time, a grid of fictitious observations is settled just by interpolating the available observations. The measurement error covariance matrix abociated to these fictitious observations is estimated abuming that these errors evolve in time as Brownian bridges, with diffusion coefficients depending on the goodneb-To-fit of the polinomial curves with respect to the observed data

    Optimizing Water Consumption in Richards' Equation Framework with Step-Wise Root Water Uptake: A Simplified Model

    No full text
    This work arises from the need of exploring new features for modeling and optimizing water consumption in irrigation processes. In particular, we focus on water flow model in unsaturated soils, accounting also for a root water uptake term, which is assumed to be discontinuos in the state variable. We investigate the possibility of accomplishing such optimization by computing the steady solutions of a theta-based Richards equation revised as equilibrium points of the ODEs system resulting from a numerical semi-dicretization in the space; after such semi-discretization, these equilibrium points are computed exactly as the solutions of a linear system of algebraic equations: the case in which the equilibrium lies on the threshold for the uptake term is of particular interest, since the system considerably simplifies. In this framework, the problem of minimizing the water waste below the root level is investigated. Numerical simulations are provided for representing the obtained results.Article HighlightsRoot water uptake is modelled in a Richards' equation framework with a discontinuoussink term.After a proper semidiscretization in space, equilibrium points of the resultingnonlinear ODE system are computed exactly.The proposed approach simplifies a control problem for optimizing water consumption
    corecore