35 research outputs found

    Predictors of HBeAg status and hepatitis B viraemia in HIV-infected patients with chronic hepatitis B in the HAART era in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HBV-HIV co-infection is associated with an increased liver-related morbidity and mortality. However, little is known about the natural history of chronic hepatitis B in HIV-infected individuals under highly active antiretroviral therapy (HAART) receiving at least one of the two drugs that also affect HBV (TDF and LAM). Information about HBeAg status and HBV viremia in HIV/HBV co-infected patients is scarce. The objective of this study was to search for clinical and virological variables associated with HBeAg status and HBV viremia in patients of an HIV/HBV co-infected cohort.</p> <p>Methods</p> <p>A retrospective cross-sectional study was performed, of HBsAg-positive HIV-infected patients in treatment between 1994 and 2007 in two AIDS outpatient clinics located in the SĂŁo Paulo metropolitan area, Brazil. The baseline data were age, sex, CD4 T+ cell count, ALT level, HIV and HBV viral load, HBV genotype, and duration of antiretroviral use. The variables associated to HBeAg status and HBV viremia were assessed using logistic regression.</p> <p>Results</p> <p>A total of 86 HBsAg patients were included in the study. Of these, 48 (56%) were using combination therapy that included lamivudine (LAM) and tenofovir (TDF), 31 (36%) were using LAM monotherapy, and 7 patients had no previous use of either one. Duration of use of TDF and LAM varied from 4 to 21 and 7 to 144 months, respectively. A total of 42 (48. 9%) patients were HBeAg positive and 44 (51. 1%) were HBeAg negative. The multivariate analysis revealed that the use of TDF for longer than 12 months was associated with undetectable HBV DNA viral load (serum HBV DNA level < 60 UI/ml) (<it>p </it>= 0. 047). HBeAg positivity was associated with HBV DNA > 60 UI/ml (p = 0. 001) and ALT levels above normality (<it>p </it>= 0. 038).</p> <p>Conclusion</p> <p>Prolonged use of TDF containing HAART is associated with undetectable HBV DNA viral load. HBeAg positivity is associated with HBV viremia and increased ALT levels.</p

    Detection of Hepatitis B virus subgenotype A1 in a Quilombo community from Maranhao, Brazil

    Get PDF
    Background: The Brazilian population is mainly descendant from European colonizers, Africans and Native Americans. Some Afro-descendants lived in small isolated communities since the slavery period. The epidemiological status of HBV infection in Quilombos communities from northeast of Brazil remains unknown. The aim of this study was to characterize the HBV genotypes circulating inside a Quilombo isolated community from Maranhao State, Brazil. Methods: Seventy-two samples from Frechal Quilombo community at Maranhao were collected. All serum samples were screened by enzyme-linked immunosorbent assays for the presence of hepatitis B surface antigen ( HBsAg). HBsAg positive samples were submitted to DNA extraction and a fragment of 1306 bp partially comprising HBsAg and polymerase coding regions (S/POL) was amplified by nested PCR and its nucleotide sequence was determined. Viral isolates were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 320). Sequences were aligned using Muscle software and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted using Markov Chain Monte Carlo (MCMC) method to obtain the MCC tree using BEAST v.1.5.3. Results: Of the 72 individuals, 9 (12.5%) were HBsAg-positive and 4 of them were successfully sequenced for the 1306 bp fragment. All these samples were genotype A1 and grouped together with other sequences reported from Brazil. Conclusions: The present study represents the first report on the HBV genotypes characterization of this community in the Maranhao state in Brazil where a high HBsAg frequency was found. In this study, we reported a high frequency of HBV infection and the exclusive presence of subgenotype A1 in an Afro-descendent community in the Maranhao State, Brazil.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP[2007/53457-7]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP[2008/50461-6]CNP

    Detection of Hepatitis E Virus Genotype 3 in Feces of Capybaras (Hydrochoeris hydrochaeris) in Brazil

    No full text
    Hepatitis E virus (HEV) is an emerging zoonotic pathogen associated with relevant public health issues. The aim of this study was to investigate HEV presence in free-living capybaras inhabiting urban parks in São Paulo state, Brazil. Molecular characterization of HEV positive samples was undertaken to elucidate the genetic diversity of the virus in these animals. A total of 337 fecal samples were screened for HEV using RT-qPCR and further confirmed by conventional nested RT-PCR. HEV genotype and subtype were determined using Sanger and next-generation sequencing. HEV was detected in one specimen (0.3%) and assigned as HEV-3f. The IAL-HEV_921 HEV-3f strain showed a close relationship to European swine, wild boar and human strains (90.7–93.2% nt), suggesting an interspecies transmission. Molecular epidemiology of HEV is poorly investigated in Brazil; subtype 3f has been reported in swine. This is the first report of HEV detected in capybara stool samples worldwide

    Detection of Hepatitis E Virus Genotype 3 in Feces of Capybaras (Hydrochoeris hydrochaeris) in Brazil

    No full text
    Hepatitis E virus (HEV) is an emerging zoonotic pathogen associated with relevant public health issues. The aim of this study was to investigate HEV presence in free-living capybaras inhabiting urban parks in S&atilde;o Paulo state, Brazil. Molecular characterization of HEV positive samples was undertaken to elucidate the genetic diversity of the virus in these animals. A total of 337 fecal samples were screened for HEV using RT-qPCR and further confirmed by conventional nested RT-PCR. HEV genotype and subtype were determined using Sanger and next-generation sequencing. HEV was detected in one specimen (0.3%) and assigned as HEV-3f. The IAL-HEV_921 HEV-3f strain showed a close relationship to European swine, wild boar and human strains (90.7&ndash;93.2% nt), suggesting an interspecies transmission. Molecular epidemiology of HEV is poorly investigated in Brazil; subtype 3f has been reported in swine. This is the first report of HEV detected in capybara stool samples worldwide

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore