1,775 research outputs found

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partnerā€™s side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.ā€™s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a ā€œgraceful terminationā€ of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner

    Uniform Labeled Transition Systems for Nondeterministic, Probabilistic, and Stochastic Process Calculi

    Get PDF
    Labeled transition systems are typically used to represent the behavior of nondeterministic processes, with labeled transitions defining a one-step state to-state reachability relation. This model has been recently made more general by modifying the transition relation in such a way that it associates with any source state and transition label a reachability distribution, i.e., a function mapping each possible target state to a value of some domain that expresses the degree of one-step reachability of that target state. In this extended abstract, we show how the resulting model, called ULTraS from Uniform Labeled Transition System, can be naturally used to give semantics to a fully nondeterministic, a fully probabilistic, and a fully stochastic variant of a CSP-like process language.Comment: In Proceedings PACO 2011, arXiv:1108.145

    The Spectrum of Strong Behavioral Equivalences for Nondeterministic and Probabilistic Processes

    Full text link
    We present a spectrum of trace-based, testing, and bisimulation equivalences for nondeterministic and probabilistic processes whose activities are all observable. For every equivalence under study, we examine the discriminating power of three variants stemming from three approaches that differ for the way probabilities of events are compared when nondeterministic choices are resolved via deterministic schedulers. We show that the first approach - which compares two resolutions relatively to the probability distributions of all considered events - results in a fragment of the spectrum compatible with the spectrum of behavioral equivalences for fully probabilistic processes. In contrast, the second approach - which compares the probabilities of the events of a resolution with the probabilities of the same events in possibly different resolutions - gives rise to another fragment composed of coarser equivalences that exhibits several analogies with the spectrum of behavioral equivalences for fully nondeterministic processes. Finally, the third approach - which only compares the extremal probabilities of each event stemming from the different resolutions - yields even coarser equivalences that, however, give rise to a hierarchy similar to that stemming from the second approach.Comment: In Proceedings QAPL 2013, arXiv:1306.241

    A uniform framework for modelling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences

    Get PDF
    Labeled transition systems are typically used as behavioral models of concurrent processes, and the labeled transitions define the a one-step state-to-state reachability relation. This model can be made generalized by modifying the transition relation to associate a state reachability distribution, rather than a single target state, with any pair of source state and transition label. The state reachability distribution becomes a function mapping each possible target state to a value that expresses the degree of one-step reachability of that state. Values are taken from a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC), fully stochastic processes (ACTMC), and of nondeterministic and probabilistic (MDP) or nondeterministic and stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral equivalences. These can be defined on ULTraS by relying on appropriate measure functions that expresses the degree of reachability of a set of states when performing single-step or multi-step computations. It is shown that the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS coincide with the behavioral equivalences defined in the literature over traditional models

    Revisiting bisimilarity and its modal logic for nondeterministic and probabilistic processes

    Get PDF
    We consider PML, the probabilistic version of Hennessy-Milner logic introduced by Larsen and Skou to characterize bisimilarity over probabilistic processes without internal nondeterminism.We provide two different interpretations for PML by considering nondeterministic and probabilistic processes as models, and we exhibit two new bisimulation-based equivalences that are in full agreement with those interpretations. Our new equivalences include as coarsest congruences the two bisimilarities for nondeterministic and probabilistic processes proposed by Segala and Lynch. The latter equivalences are instead in agreement with two versions of Hennessy-Milner logic extended with an additional probabilistic operator interpreted over state distributions rather than over individual states. Thus, our new interpretations of PML and the corresponding new bisimilarities offer a uniform framework for reasoning on processes that are purely nondeterministic or reactive probabilistic or are mixing nondeterminism and probability in an alternating/non-alternating way

    TAPAs: A Tool for the Analysis of Process Algebras

    Get PDF
    Process algebras are formalisms for modelling concurrent systems that permit mathematical reasoning with respect to a set of desired properties. TAPAs is a tool that can be used to support the use of process algebras to specify and analyze concurrent systems. It does not aim at guaranteeing high performances, but has been developed as a support to teaching. Systems are described as process algebras terms that are then mapped to labelled transition systems (LTSs). Properties are verified either by checking equivalence of concrete and abstract systems descriptions, or by model checking temporal formulae over the obtained LTS. A key feature of TAPAs, that makes it particularly suitable for teaching, is that it maintains a consistent double representation of each system both as a term and as a graph. Another useful didactical feature is the exhibition of counterexamples in case equivalences are not verified or the proposed formulae are not satisfied

    A uniform definition of stochastic process calculi

    Get PDF
    We introduce a unifying framework to provide the semantics of process algebras, including their quantitative variants useful for modeling quantitative aspects of behaviors. The unifying framework is then used to describe some of the most representative stochastic process algebras. This provides a general and clear support for an understanding of their similarities and differences. The framework is based on State to Function Labeled Transition Systems, FuTSs for short, that are state-transition structures where each transition is a triple of the form (s; Ī±;P). The first andthe second components are the source state, s, and the label, Ī±, of the transition, while the third component is the continuation function, P, associating a value of a suitable type to each state s0. For example, in the case of stochastic process algebras the value of the continuation function on s0 represents the rate of the negative exponential distribution characterizing the duration/delay of the action performed to reach state s0 from s. We first provide the semantics of a simple formalism used to describe Continuous-Time Markov Chains, then we model a number of process algebras that permit parallel composition of models according to the two main interaction paradigms (multiparty and one-to-one synchronization). Finally, we deal with formalisms where actions and rates are kept separate and address the issues related to the coexistence of stochastic, probabilistic, and non-deterministic behaviors. For each formalism, we establish the formal correspondence between the FuTSs semantics and its original semantics

    The transition from crawling to walking: Can infants elicit an alteration of their parents' perception?

    Get PDF
    Our study was designed to address a gap in the literature on parentsā€™ perception and motivation to protect their infants from potential risk of injury in the transition from crawling to walking. The participants were 260 Italian subjects, of whom 158 were women and 102 men, aged between 20 and 45 years. They were asked to draw two domestic objects to assess the possible alterations in the perception of environmental elements seen by the parents as a potentially dangerous cause of unintentional injury for their child. Analysis showed that the group of mothers with children aged 9 to 18 months had drawn the largest tables, while the table areas of the other two categories of women were much smaller.Concerning males, the group that drew the largest tables was the one with children, but not in the age range of 9-18 months, while there was no great difference between the other two groups. The final descriptive analysis concerned the average scores on the STAI-Y tests both for state and trait anxiety. In all groups a substantial parity was observed, except for the non-parent men, who had a lower a lower level of state anxiety. Both the fathers and the mothers of children of 9-18 months obtained lower scores, both for state and trait anxiety. Based on the findings, we demonstrate that children transitioning from crawling to walking can elicit a perceptive reactivity their mothers, which satisfies their natural need to protect their offspring

    Experimental characterization of a Circular Diaphragm Dielectric Elastomer Generators

    Get PDF
    Inflated Circular Diaphragm Dielectric Elastomer Generators (CD-DEGs) are a special embodiment of polymeric transducer that can be used to convert pneumatic energy into high-voltage direct-current electricity. Potential application of CD-DEGs is as power take-off system for wave energy converters that are based on the oscillating water column principle. Optimal usage of CD-DEGs requires the adequate knowledge of their dynamic electro-mechanical response. This paper presents a test-rig for the experimental study of the dynamic response of CD-DEGs under different programmable electro-mechanical loading conditions. Experimental results acquired on the test-rig are also presented, which highlight the dynamic performances of CD-DEGs that are based on acrylic elastomer membranes and carbon conductive grease electrodes
    • ā€¦
    corecore