92 research outputs found

    Engineering Codrug Solid Forms: Mechanochemical Synthesis of an Indomethacin-Caffeine System

    Get PDF
    This article reports on the preparation and solid-state characterization of an indomethacin 12caffeine drug 12drug cocrystal (or codrug) in a 1:1 stoichiometry. These two active ingredients are frequently coadministered as part of a therapy against strong migraines, in a commercially available fixed dose combination formulation. The X-ray crystal structure of the codrug is characterized by a hydrogen bond interaction between the carboxylic moiety of indomethacin and the purinic nitrogen atom of caffeine. The combination of multinuclear and multidimensional solid-state NMR measurements (1H MAS, 13C and 15N CPMAS, 1H DQ MAS, 13C 121H HETCOR, 14N 121H J- and D-HMQC), as well as IR data, provided spectroscopic evidence about the hydrogen atom position along the hydrogen bond axis, thereby confirming the neutral nature of the cocrystal. Furthermore, dissolution kinetic tests revealed superior bioavailability of indomethacin in the codrug compared to indomethacin alone and to an indomethacin 12caffeine physical mixture. On the other hand, the melting point of indomethacin was slightly lower in the cocrystal rather than in the pure drug

    Improving Biopharmaceutical Properties of Vinpocetine Through Cocrystallization

    Get PDF
    Vinpocetine is a poorly water soluble weakly basic drug (pKa \ubc 7.1) used for the treatment of several cerebrovascular and cognitive disorders. Because existing formulations exhibit poor bioavailability and scarce absorption, a dosage form with improved pharmacokinetic properties is highly desirable. Cocrystallization represents a promising approach to generate diverse novel crystal forms and to improve the aqueous solubility and in turn the oral bioavailability. In this article, a novel ionic cocrystal of vinpocetine is described, using boric acid as a coformer, and fully characterized (by means of differential scanning calorimetry, solid-state nuclear magnetic resonance, powder and singlecrystal X-ray diffraction, and powder dissolution test). Pharmacokinetic performance was also tested in a human pilot study. This pharmaceutical ionic cocrystal exhibits superior solubilization kinetics and modulates important pharmacokinetic values such as maximum concentration in plasma (Cmax), time to maximum concentration (tmax), and area under the plasma concentration-time curve (AUC) of the poorly soluble vinpocetine and it therefore offers an innovative approach to improve its bioavailability

    Isolation, characterization, and environmental application of bio-based materials as auxiliaries in photocatalytic processes

    Get PDF
    Sustainable alternative substrates for advanced applications represent an increasing field of research that attracts the attention of worldwide experts (in accordance with green chemistry principles). In this context, bio-based substances (BBS) isolated from urban composted biowaste were purified and characterized. Additionally, these materials were tested as auxiliaries in advanced oxidizing photocatalytic processes for the abatement of organic contaminants in aqueous medium. Results highlighted the capability of these substances to enhance efficiency in water remediation treatments under mild conditions, favoring the entire light-driven photocatalytic process

    Mechanochemical Synthesis and Physicochemical Characterization of Previously Unreported Praziquantel Solvates with 2-Pyrrolidone and Acetic Acid.

    Get PDF
    Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A

    Mechanochemical Formation of Racemic Praziquantel Hemihydrate with Improved Biopharmaceutical Properties.

    Get PDF
    Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and deposited in the Cambridge Structural Database (CSD). This work adds to the list of multicomponent forms of PZQ a relevant example of a racemic hemihydrate (PZQ-HH), obtainable from commercial PZQ (polymorphic Form A) through mechanochemistry. Noteworthy, the formation of the new hemihydrate strongly depends on the initial polymorphic form of PZQ and on the experimental conditions used. The new PZQ-HH has been fully characterized by means of HPLC, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Hot-Stage Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), FT-IR, polarimetry, solid-state NMR (SS-NMR), solubility and intrinsic dissolution rate (IDR), and in vitro tests on Schistosoma mansoni adults. The crystal structure was solved from the powder X-ray diffraction pattern and validated by periodic-DFT calculations. The new bioactive hemihydrate was physically stable for three months and showed peculiar biopharmaceutical features including enhanced solubility and a double intrinsic dissolution rate in water in comparison to the commercially available PZQ Form A
    corecore