114 research outputs found

    Hydrogeochemistry and Groundwater Quality Assessment in the High Agri Valley (Southern Italy)

    Get PDF
    The High Agri Valley (southern Italy) is one of the largest intermontane basin of the southern Apennines affected by intensive agricultural and industrial activities. The study of groundwater chemical features provides much important information useful in water resource management. In this study, hydrogeochemical investigations coupled with multivariate statistics, saturation indices, and stable isotope composition (δD and δ18O) were conducted in the High Agri Valley to determine the chemical composition of groundwater and to define the geogenic and anthropogenic influences on groundwater quality. Twenty-four sampling point ( including well and spring waters) have been examined. The isotopic data revealed that groundwater has a meteoric origin. Well waters, located on recent alluvial-lacustrine deposits in shallow porous aquifers at the valley floor, are influenced by seasonal rainfall events and show shallow circuits; conversely, spring waters from fissured and/or karstified aquifers are probably associated to deeper and longer hydrogeological circuits. The R -mode factor analysis shows that three factors explain 94% of the total variance, and F1 represents the combined effect of dolomite and silicate dissolution to explain most water chemistry. In addition, very low contents of trace elements were detected, and their distribution was principally related to natural input. Only two well waters, used for irrigation use, show critical issue for NO3- concentrations, whose values are linked to agricultural activities. Groundwater quality strongly affects the management of water resources, as well as their suitability for domestic, agricultural, and industrial uses. Overall, our results were considered fulfilling the requirements for the inorganic component of the Water Framework Directive and Italian legislation for drinking purposes. The water quality for irrigation is from "good to permissible" to "excellent to good" although salinity and relatively high content of Mg2+ can occasionally be critical

    Serpentinite Carbonation for CO2 Sequestration in the Southern Apennines: Preliminary Study

    Get PDF
    Abstract During "Mineral CO2 sequestration" the CO2 is chemically stored in solid carbonates by the carbonations of minerals. The sequestration of CO2 is permanent and safe. Mineral carbonation is an exothermic reaction and occurs naturally in the subsurface as a result of fluid–rock interactions within serpentinite. In situ carbonation aims to promote these reactions by injecting CO2 into porous, subsurface geological formations. In the northern sector of the Pollino Massif (southern Italy) extensively occur serpentinites; they are the subject of a project devoted to their possible use for in situ geological sequestration of CO2

    Real Selves? Subjectivity and the Subpersonal Mind

    Get PDF
    The current philosophical discussion on the self and consciousness is characterized by a contrast or dilemma between the no-self (eliminativist) perspective, on the one hand, and the arguably naive account that takes the self as a robust entity, on the other. In order to solve the dilemma, in this paper we suggest restoring a robust theory of the subject based on a bottom-up approach (fully consonant with contemporary neurocognitive science) together with a pluralistic reading of the nature of the science of the mental

    Mineralogy and heavy metal assessment of the Pietra del Pertusillo reservoir sediments (Southern Italy)

    Get PDF
    The Pietra del Pertusillo freshwater reservoir is a major artificial lake of environmental, biological, and ecological importance located in the Basilicata region, southern Italy. The reservoir arch-gravity dam was completed in 1963 for producing hydroelectric energy and providing water for human use, and nearby there are potential sources of anthropogenic pollution such as urban and industrial activities. For the first time, the minero-chemistry of the lake and fluvio-lacustrine sediments of the reservoir have been evaluated to assess the environmental quality. Moreover, the composition of fluvial sediments derived from the peri-lacual zone of the reservoir and of local outcropping bedrock were also studied to understand the factors affecting the behavior of elements in the freshwater reservoir, with particular attention paid to heavy metals. In Italy, specific regulatory values concerning the element threshold concentration for lake and river sediments do not exist, and for this reason, soil threshold values are considered the standard for sediments of internal waters. The evaluation of the environmental quality of reservoir sediments has been performed using enrichment factors obtained with respect to the average composition of a reconstructed local upper continental crust. We suggest this method as an innovative standard in similar conditions worldwide. In the studied reservoir sediments, the trace elements that may be of some environmental concern are Cr, Cu, Zn, As, and Pb although, at this stage, the distribution of these elements appears to be mostly driven by geogenic processes. However, within the frame of the assessment and the preservation of the quality of aquatic environments, particular attention has to be paid to As (which shows median value of 10 ppm, reaching a maximum value of 26 ppm in Quaternary sediments), constantly enriched in the lacustrine samples and especially in the fine-grained fraction (median = 8.5 ppm)

    Hydrogeochemical multi-component approach to assess fluids upwelling and mixing in shallow carbonate-evaporitic aquifers (Contursi area, southern Apennines, Italy)

    Get PDF
    With the aim of deepening our understanding of deep-seated fluids upwelling and mixing in large regional aquifers, we performed a hydrogeochemical study of twenty-two springs in the Contursi area (upper Sele river valley, southern Apennines) by means of the measurements of chemical-physical parameters, major ions, trace elements, and stable and radioactive isotopes. Besides, we realized two updated geo-structural cross-sections in order to reconstruct the groundwater flowpath in the study area. The hydrogeochemical composition, as well as the water temperature allow to identify-three main groups of groundwater: Cold and Low salinity Groundwater (CLGW), Intermediate Salinity Groundwater (ISGW), and Thermal Salinity Groundwater (TSGW). The CLGW group, mostly emerging at the boundary of carbonate aquifers, is characterized by alkaline earth-bicarbonate hydrofacies. Instead, ISGW and TSGW, situated in the inner zone of the valley, show gradually a hydrogeochemical evolution towards sodium-chloride type hydrofacies domain with the highest salinity value. Stable isotope (δ18O-δD) of CLGW reveal the local meteoric origin of groundwater, while isotopic signatures of ISGW and TSGW is associated with the deep fluids inflow. CLGW hydrogeochemistry is clearly related to dissolution of carbonate rocks. On the other hand, for ISGW and TSGW an additional contribution from evaporitic rocks is supported by saturation indices values (gypsum and anhydrite) and validated by isotopic signature of dissolved sulphate (δ34S-δ18O). The application of two models based on tritium data (i.e., the piston-flow and well-mixed reservoir) attributes longer and deeper groundwater flowpaths to TSGW. Through geothermometric calculations (e,g., K-Mg and SiO2-quartz), the equilibrium temperature of deep fluids reservoir is also extrapolated (i.e., 75–96 °C). The results of the adopted hydrogeochemical multi-component approach allowed us to propose an interpretative model of groundwater flowpath for the Contursi area, where deep-seated tectonic discontinuities play a significant role for the upwelling of saline deep thermal fluids in shallow aquifers

    Petrography and Geochemistry of the Leucocratic Rocks in the Ophiolites from the Pollino Massif (Southern Italy)

    Get PDF
    In the Tethyan realm, leucocratic rocks were recognized as dikes and layers outcropping in the ophiolitic rocks of the Western Alps, in Corsica, and in the Northern Apennines. Several authors have suggested that the origin of leucocratic rocks is associated with partial melting of cumulate gabbro. Major and trace elements composition and paragenesis provided information about the leucocratic rocks genetic processes. This research aims at disclosing, for the first time, the petrographical and geochemical features of Timpa delle Murge leucocratic rocks, Pollino Massif (southern Italy), in order to discuss their origin and geodynamic significance through a comparison with other Tethyan leucocratic rocks. These rocks are characterized by high amounts of silica with moderate alumina and iron-magnesium contents showing higher potassium contents than plagiogranites, due to plagioclase alteration to sericite. Plagioclase fractionation reflects negative Eu anomalies indicating its derivation from gabbroic crystal mushes. The chondrite normalized REEs patterns suggest the participation of partial melts derived from a metasomatized mantle in a subduction environment. The results reveal some similarities in composition with other Tethyan leucocratic rocks, especially those concerning Corsica and the Northern Alps. These new data provide further clues on the origin of these leucocratic rocks and the Tethyan area geodynamic evolutio

    Status and upgrade of the visible light diagnostics port for energy spread measurements at KARA

    Get PDF
    At the visible light diagnostic (VLD) port at the Karlsruhe Research Accelerator (KARA), it is possible to measure the energy spread of electron bunches by measuring the horizontal bunch profile of the incoherent synchrotron radiation. KALYPSO, a MHz-rate line-array detector has been used to measure the bunch profile. Recently, the KALYPSO system has been upgraded to a version incorporating a microstrip sensor based on TI-LGAD. The performed measurements have shown that the overall sensitivity of the system was significantly improved, which enables measurements at low bunch charges. In this contribution, a brief overview of the upgraded setup and preliminary measurement results will be presented

    Ethical Issues in the Use of Suboptimal Kidneys for Transplants: an Italian Point of View

    Get PDF
    The shortage of organs leads to the need for utilizing suboptimal kidneys for transplantation. The distinction between optimal, marginal, and suboptimal kidneys leads surgeons to face not only technical problems but also ethical and legal issues related to clinical advantages offered by the transplant of a nonstandard kidney and the acquisition of consent. Between 1999 and 2015, we performed 658 transplants, 49 (7.5%) using suboptimal kidneys. All patients were alive and with vital graft throughout follow-up. We did not encounter any major surgical complications. From a technical point of view, our experience and literature review confirm that transplant of suboptimal kidney leads to good clinical results but exposes patients to a increased risks of surgical complications. Therefore, these interventions must take place in hospitals fully prepared for this type of surgery and performed by experienced transplant surgeons with proper matching between organ and recipient. Considering the insufficient resources available, from an ethical and legal point of view, doctors play an essential role in optimizing the use of these kidneys by avoiding wastage of organs, ensuring that transplants are done in suitable patients, and that patients are fully informed and aware of the risks and benefits associated with the specific suboptimal kidney being transplanted. We believe that, in highly specialized centers, the number of suboptimal kidney transplants should be increased, as their use has shown good clinical results and carries fewer ethical issues compared with marginal kidneys. Further, suboptimal kidneys may also be proposed for use in young patients with end-stage renal disease

    Biogeochemical and microbial community structure differently modulates CO2 and CH4 dynamics in two adjacent volcanic lakes (Monticchio, Italy)

    Get PDF
    By hosting significant amounts of extra-atmospheric dissolved gases, including geogenic CO2 and CH4, volcanic lakes provide relevant ecosystem services through the key role the aquatic microbial community in mediating freshwater carbon fluxes. In view of elucidating the mechanisms governing the microbial spatial distribution and the possible implications for ecosystem functioning, we compared the hydrogeochemical features and the microbial community structure of two adjacent stratified volcanic lakes (Lake Grande - LG and Lake Piccolo - LP). Water chemistry, gases and their isotopic composition were coupled with microbial pigment profiling, cell counting, and phylogenetic analyses. LP showed transparent waters with low concentrations of chlorophyll-a and the occurrence of phycoerytrin-rich cyanobacteria. LG was relatively more eutrophic with a higher occurrence of diatoms and phycocyanine-rich cyanobacteria. Considering the higher concentrations of CO2 and CH4 in bottom waters, the oligotrophic LP was likely a more efficient sink of geogenic CO2 in comparison to the adjacent eutrophic LG. The prokaryotic community was dominated by the mixothrophic hgcI clade (family Sporichthyaceae) in the LG surface waters, while in LP this taxon was dominant down to -15 m. Moreover, in LP, the bottom dark waters harbored a unique strictly anaerobic bacterial assemblage associated with methanogenic Archaea (i.e. Methanomicrobiales), resulting in a high biogenic methane concentration. Water layering and light penetration were confirmed as major factors affecting the microbial distribution patterns. The observed differences in the geochemical and trophic conditions reflected the structure of the aquatic microbial community, with direct consequences on the dynamics of dissolved greenhouse gases
    • …
    corecore