19 research outputs found

    Early Bronze Age IV Food Trasformation and Storage Installations at Khirbet al-Batrawy, Jordan

    Get PDF
    Rapporto sui risultati degli scavi a Khirbet al-BatrawyReport on the results of the excavations at Khirbet al-Batraw

    Effects of PTEN Loss and Activated KRAS Overexpression on Mechanical Properties of Breast Epithelial Cells

    No full text
    It has previously been shown that the simultaneous activation of PI3K (phosphatidylinositol 3-kinase) and Ras/MAPK (mitogen-activated protein kinases) pathways facilitate tumor growth despite only inducing cancer cell dormancy individually. Determining the impacts on cellular mechanics each pathway incites alone and in unison is critical to developing non-toxic cancer therapies for triple-negative breast cancers. PTEN (phosphatase and tensin homolog) knockout and activated KRAS (Kristen rat sarcoma viral oncogene homolog) overexpression in healthy MCF-10A human breast epithelial cells activated the PI3K and Ras/MAPK pathways, respectively. Cell stiffness and fluidity were simultaneously measured using atomic force microscopy. Results suggest that PTEN knockout reduced cell stiffness and increased cell fluidity independent of PI3K activation. Effects of activated KRAS overexpression on cell stiffness depends on rigidity of cell culture substrate. Activated KRAS overexpression also counteracts the effects of PTEN knockout

    Gauging the Impact of Cancer Treatment Modalities on Circulating Tumor Cells (CTCs)

    No full text
    The metastatic cascade consists of multiple complex steps, but the belief that it is a linear process is diminishing. In order to metastasize, cells must enter the blood vessels or body cavities (depending on the cancer type) via active or passive mechanisms. Once in the bloodstream and/or lymphatics, these cancer cells are now termed circulating tumor cells (CTCs). CTC numbers as well as CTC clusters have been used as a prognostic marker with higher numbers of CTCs and/or CTC clusters correlating with an unfavorable prognosis. However, we have very limited knowledge about CTC biology, including which of these cells are ultimately responsible for overt metastatic growth, but due to the fact that higher numbers of CTCs correlate with a worse prognosis; it would seem appropriate to either limit CTCs and/or their dissemination. Here, we will discuss the different cancer treatments which may inadvertently promote the mobilization of CTCs and potential CTC therapies to decrease metastasis

    Single-Cell Tracking of Breast Cancer Cells Enables Prediction of Sphere Formation from Early Cell Divisions

    No full text
    Summary: The mammosphere assay has become widely employed to quantify stem-like cells in a population. However, the problem is there is no standard protocol employed by the field. Cell seeding densities of 1,000 to 100,000 cells/mL have been reported. These high densities lead to cellular aggregation. To address this, we have individually tracked 1,127 single MCF-7 and 696 single T47D human breast tumor cells by eye over the course of 14 days. This tracking has given us detailed information for the commonly used endpoints of 5, 7, and 14 days that is unclouded by cellular aggregation. This includes mean sphere sizes, sphere-forming efficiencies, and a well-defined minimum size for both lines. Importantly, we have correlated early cell division with eventual sphere formation. At 24 hr post seeding, we can predict the total spheres on day 14 with 98% accuracy in both lines. This approach removes cell aggregation and potentially shortens a 5- to 14-day assay to a 24 hours. : Biology Experimental Methods; Cancer Subject Areas: Biology Experimental Methods, Cance

    Hydrogen Peroxide Induces α-Tubulin Detyrosination and Acetylation and Impacts Breast Cancer Metastatic Phenotypes

    No full text
    Levels of hydrogen peroxide are highly elevated in the breast tumor microenvironment compared to normal tissue. Production of hydrogen peroxide is implicated in the mechanism of action of many anticancer therapies. Several lines of evidence suggest hydrogen peroxide mediates breast carcinogenesis and metastasis, though the molecular mechanism remains poorly understood. This study elucidates the effects of exposure to elevated hydrogen peroxide on non-tumorigenic MCF10A mammary epithelial cells, tumorigenic MCF7 cells, and metastatic MDA-MB-231 breast cancer cells. Hydrogen peroxide treatment resulted in a dose- and time-dependent induction of two α-tubulin post-translational modifications—de-tyrosination and acetylation—both of which are markers of poor patient prognosis in breast cancer. Hydrogen peroxide induced the formation of tubulin-based microtentacles in MCF10A and MDA-MB-231 cells, which were enriched in detyrosinated and acetylated α-tubulin. However, the hydrogen peroxide-induced microtentacles did not functionally promote metastatic phenotypes of cellular reattachment and homotypic cell clustering. These data establish for the first time that microtentacle formation can be separated from the functions to promote reattachment and clustering, which indicates that there are functional steps that remain to be identified. Moreover, signals in the primary tumor microenvironment may modulate α-tubulin post-translational modifications and induce microtentacles; however, the functional consequences appear to be context-dependent

    Elevation of Cytoplasmic Calcium Suppresses Microtentacle Formation and Function in Breast Tumor Cells

    No full text
    Cytoskeletal remodeling in circulating tumor cells (CTCs) facilitates metastatic spread. Previous oncology studies examine sustained aberrant calcium (Ca2+) signaling and cytoskeletal remodeling scrutinizing long-term phenotypes such as tumorigenesis and metastasis. The significance of acute Ca2+ signaling in tumor cells that occur within seconds to minutes is overlooked. This study investigates rapid cytoplasmic Ca2+ elevation in suspended cells on actin and tubulin cytoskeletal rearrangements and the metastatic microtentacle (McTN) phenotype. The compounds Ionomycin and Thapsigargin acutely increase cytoplasmic Ca2+, suppressing McTNs in the metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-436. Functional decreases in McTN-mediated reattachment and cell clustering during the first 24 h of treatment are not attributed to cytotoxicity. Rapid cytoplasmic Ca2+ elevation was correlated to Ca2+-induced actin cortex contraction and rearrangement via myosin light chain 2 and cofilin activity, while the inhibition of actin polymerization with Latrunculin A reversed Ca2+-mediated McTN suppression. Preclinical and phase 1 and 2 clinical trial data have established Thapsigargin derivatives as cytotoxic anticancer agents. The results from this study suggest an alternative molecular mechanism by which these compounds act, and proof-of-principle Ca2+-modulating compounds can rapidly induce morphological changes in free-floating tumor cells to reduce metastatic phenotypes
    corecore