1,201 research outputs found

    Shape dependence and anisotropic finite-size scaling of the phase coherence of three-dimensional Bose-Einstein condensed gases

    Full text link
    We investigate the equilibrium phase-coherence properties of Bose-condensed particle systems, focusing on their shape dependence and finite-size scaling (FSS). We consider three-dimensional (3D) homogeneous systems confined to anisotropic L x L x L_a boxes, below the BEC transition temperature TcT_c. We show that the phase correlations develop peculiar anisotropic FSS for any T<TcT<T_c, in the large-LL limit keeping the ratio \lambda = L_a/L^2 fixed. This phenomenon is effectively described by the 3D spin-wave (SW) theory. Its universality is confirmed by quantum Monte Carlo simulations of the 3D Bose-Hubbard model in the BEC phase. The phase-coherence properties of very elongated BEC systems, \lambda>>1, are characterized by a coherence length \xi_a \sim A_t \rho_s/T where A_t is the transverse area and \rho_s is the superfluid density.Comment: 7 page

    VegaMC: a R/bioconductor package for fast downstream analysis of large array comparative genomic hybridization datasets

    Get PDF
    Abstract Summary: Identification of genetic alterations of tumor cells has become a common method to detect the genes involved in development and progression of cancer. In order to detect driver genes, several samples need to be simultaneously analyzed. The Cancer Genome Atlas (TCGA) project provides access to a large amount of data for several cancer types. TGCA is an invaluable source of information, but analysis of this huge dataset possess important computational problems in terms of memory and execution times. Here, we present a R/package, called VegaMC (Vega multi-channel), that enables fast and efficient detection of significant recurrent copy number alterations in very large datasets. VegaMC is integrated with the output of the common tools that convert allele signal intensities in log R ratio and B allele frequency. It also enables the detection of loss of heterozigosity and provides in output two web pages allowing a rapid and easy navigation of the aberrant genes. Synthetic data and real datasets are used for quantitative and qualitative evaluation purposes. In particular, we demonstrate the ability of VegaMC on two large TGCA datasets: colon adenocarcinoma and glioblastoma multiforme. For both the datasets, we provide the list of aberrant genes which contain previously validated genes and can be used as basis for further investigations. Availability: VegaMC is a R/Bioconductor Package, available at http://bioconductor.org/packages/release/bioc/html/VegaMC.html. Contact: [email protected] Supplementary Information: Supplementary data are available at Bioinformatics online

    IRIS: a method for reverse engineering of regulatory relations in gene networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ultimate aim of systems biology is to understand and describe how molecular components interact to manifest collective behaviour that is the sum of the single parts. Building a network of molecular interactions is the basic step in modelling a complex entity such as the cell. Even if gene-gene interactions only partially describe real networks because of post-transcriptional modifications and protein regulation, using microarray technology it is possible to combine measurements for thousands of genes into a single analysis step that provides a picture of the cell's gene expression. Several databases provide information about known molecular interactions and various methods have been developed to infer gene networks from expression data. However, network topology alone is not enough to perform simulations and predictions of how a molecular system will respond to perturbations. Rules for interactions among the single parts are needed for a complete definition of the network behaviour. Another interesting question is how to integrate information carried by the network topology, which can be derived from the literature, with large-scale experimental data.</p> <p>Results</p> <p>Here we propose an algorithm, called inference of regulatory interaction schema (IRIS), that uses an iterative approach to map gene expression profile values (both steady-state and time-course) into discrete states and a simple probabilistic method to infer the regulatory functions of the network. These interaction rules are integrated into a factor graph model. We test IRIS on two synthetic networks to determine its accuracy and compare it to other methods. We also apply IRIS to gene expression microarray data for the <it>Saccharomyces cerevisiae </it>cell cycle and for human B-cells and compare the results to literature findings.</p> <p>Conclusions</p> <p>IRIS is a rapid and efficient tool for the inference of regulatory relations in gene networks. A topological description of the network and a matrix of gene expression profiles are required as input to the algorithm. IRIS maps gene expression data onto discrete values and then computes regulatory functions as conditional probability tables. The suitability of the method is demonstrated for synthetic data and microarray data. The resulting network can also be embedded in a factor graph model.</p

    TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory.</p> <p>Results</p> <p>In this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern <it>S. cerevisiae </it>cell cycle, <it>E. coli </it>SOS pathways and a recently developed network for in vivo assessment of reverse engineering algorithms. Our results are compared with ARACNE itself and with the ones of two previously published algorithms: Dynamic Bayesian Networks and systems of ODEs, showing that TimeDelay-ARACNE has good accuracy, recall and <it>F</it>-score for the network reconstruction task.</p> <p>Conclusions</p> <p>Here we report the adaptation of the ARACNE algorithm to infer gene regulatory networks from time-course data, so that, the resulting network is represented as a directed graph. The proposed algorithm is expected to be useful in reconstruction of small biological directed networks from time course data.</p

    A scale space approach for unsupervised feature selection in mass spectra classification for ovarian cancer detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass spectrometry spectra, widely used in proteomics studies as a screening tool for protein profiling and to detect discriminatory signals, are high dimensional data. A large number of local maxima (a.k.a. <it>peaks</it>) have to be analyzed as part of computational pipelines aimed at the realization of efficient predictive and screening protocols. With this kind of data dimensions and samples size the risk of over-fitting and selection bias is pervasive. Therefore the development of bio-informatics methods based on unsupervised feature extraction can lead to general tools which can be applied to several fields of predictive proteomics.</p> <p>Results</p> <p>We propose a method for feature selection and extraction grounded on the theory of multi-scale spaces for high resolution spectra derived from analysis of serum. Then we use support vector machines for classification. In particular we use a database containing 216 samples spectra divided in 115 cancer and 91 control samples. The overall accuracy averaged over a large cross validation study is 98.18. The area under the ROC curve of the best selected model is 0.9962.</p> <p>Conclusion</p> <p>We improved previous known results on the problem on the same data, with the advantage that the proposed method has an unsupervised feature selection phase. All the developed code, as MATLAB scripts, can be downloaded from <url>http://medeaserver.isa.cnr.it/dacierno/spectracode.htm</url></p

    Finding recurrent copy number alterations preserving within-sample homogeneity

    Get PDF
    Abstract Motivation: Copy number alterations (CNAs) represent an important component of genetic variation and play a significant role in many human diseases. Development of array comparative genomic hybridization (aCGH) technology has made it possible to identify CNAs. Identification of recurrent CNAs represents the first fundamental step to provide a list of genomic regions which form the basis for further biological investigations. The main problem in recurrent CNAs discovery is related to the need to distinguish between functional changes and random events without pathological relevance. Within-sample homogeneity represents a common feature of copy number profile in cancer, so it can be used as additional source of information to increase the accuracy of the results. Although several algorithms aimed at the identification of recurrent CNAs have been proposed, no attempt of a comprehensive comparison of different approaches has yet been published. Results: We propose a new approach, called Genomic Analysis of Important Alterations (GAIA), to find recurrent CNAs where a statistical hypothesis framework is extended to take into account within-sample homogeneity. Statistical significance and within-sample homogeneity are combined into an iterative procedure to extract the regions that likely are involved in functional changes. Results show that GAIA represents a valid alternative to other proposed approaches. In addition, we perform an accurate comparison by using two real aCGH datasets and a carefully planned simulation study. Availability: GAIA has been implemented as R/Bioconductor package. It can be downloaded from the following page http://bioinformatics.biogem.it/download/gaia Contact: [email protected]; [email protected] Supplementary Information: Supplementary data are available at Bioinformatics online

    A Concerted Variational Strategy for Investigating Rare Events

    Full text link
    A strategy for finding transition paths connecting two stable basins is presented. The starting point is the Hamilton principle of stationary action; we show how it can be transformed into a minimum principle through the addition of suitable constraints like energy conservation. Methods for improving the quality of the paths are presented: for example, the Maupertuis principle can be used for determining the transition time of the trajectory and for coming closer to the desired dynamic path. A saddle point algorithm (conjugate residual method) is shown to be efficient for reaching a ``true'' solution of the original variational problem.Comment: 3 figures, accepted for publication in Journal of Chemical Physic

    TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data

    Get PDF
    The Cancer Genome Atlas (TCGA) research network has made public a large collection of clinical and molecular phenotypes of more than 10 000 tumor patients across 33 different tumor types. Using this cohort, TCGA has published over 20 marker papers detailing the genomic and epigenomic alterations associated with these tumor types. Although many important discoveries have been made by TCGA’s research network, opportunities still exist to imple- ment novel methods, thereby elucidating new bio- logical pathways and diagnostic markers. However, mining the TCGA data presents several bioinformat- ics challenges, such as data retrieval and integra- tion with clinical data and other molecular data types (e.g. RNA and DNA methylation). We developed an R/Bioconductor package called TCGAbiolinks to ad- dress these challenges and offer bioinformatics so- lutions by using a guided workflow to allow users to query, download and perform integrative analyses of TCGA data. We combined methods from computer science and statistics into the pipeline and incor- porated methodologies developed in previous TCGA marker studies and in our own group. Using four dif- ferent TCGA tumor types (Kidney, Brain, Breast and Colon) as examples, we provide case studies to illus- trate examples of reproducibility, integrative analysis and utilization of different Bioconductor packages to advance and accelerate novel discoveries
    • …
    corecore