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ABSTRACT

Motivation: Copy number alterations (CNAs) represent an important
component of genetic variation and play a significant role
in many human diseases. Development of array comparative
genomic hybridization (aCGH) technology has made it possible
to identify CNAs. Identification of recurrent CNAs represents the
first fundamental step to provide a list of genomic regions which
form the basis for further biological investigations. The main
problem in recurrent CNAs discovery is related to the need to
distinguish between functional changes and random events without
pathological relevance. Within-sample homogeneity represents a
common feature of copy number profile in cancer, so it can be used
as additional source of information to increase the accuracy of the
results. Although several algorithms aimed at the identification of
recurrent CNAs have been proposed, no attempt of a comprehensive
comparison of different approaches has yet been published.
Results: We propose a new approach, called Genomic Analysis
of Important Alterations (GAIA), to find recurrent CNAs where a
statistical hypothesis framework is extended to take into account
within-sample homogeneity. Statistical significance and within-
sample homogeneity are combined into an iterative procedure
to extract the regions that likely are involved in functional
changes. Results show that GAIA represents a valid alternative to
other proposed approaches. In addition, we perform an accurate
comparison by using two real aCGH datasets and a carefully planned
simulation study.
Availability: GAIA has been implemented as R/Bioconductor
package. It can be downloaded from the following page
http://bioinformatics.biogem.it/download/gaia
Contact: ceccarelli@unisannio.it; morganella@unisannio.it
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Recently, the impact of copy number alterations (CNAs) in human
diseases is increasingly being recognized (Albertson et al., 2003;
Shlien and Malkin, 2009; Taylor et al., 2008). CNAs are genomic
regions, >1 kb, in which copy number differences are observed
between two or more genomes (Feuk et al., 2006). aCGH technology
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allows the measurement of copy number for hundreds of thousands
locations (probes) in the genome, where copy number is expressed
by the logR Ratio (LRR), which gives an indirect measure of copy
number of each probe, computed as the ratio of observed to expected
hybridization intensity. The potential of aCGH has been exploited
in a large number of publications aimed at the identification of
functional genetic mutations involved in cancer (Beroukhim et al.,
2010). For example in Astolfi et al. (2010) and Venkatachalam et al.
(2011), the genomes of a cohort of patients are analyzed to extract
the CNAs that are common to a significant number of subjects. These
analyses are based on the fact that CNAs functionally related to the
disease under study (driver alterations) will be present in many of the
analyzed genomes (recurrent CNAs); in contrast, random somatic
mutations (passenger alterations) are subject-specific and they will
be present only in a small number of subjects. We can define a CNA
as ‘a set of continuous probes that show a high enough evidence
to being altered in at least some samples’ (Rueda and Diaz-Uriarte,
2010). Of course, rare CNAs also hold a very important role in cancer
development (Nagy et al., 2004), but most studies based on aCGH
are designed to find recurrent CNAs. For this reason, discovery of
recurrent CNAs represents a current challenge in Bioinformatics.

Several algorithms aimed at the discovery of recurrent CNAs have
been proposed. In this work, we refer to this class of algorithm as
rCNA-algorithms. rCNA-algorithms differ in many aspects: input
data, model, preprocessing step, output and execution time (an
overview of rCNA-algorithms is reported in Section 2). Indeed,
there is no comprehensive comparison of the different approaches
and very few of the published papers report a comparison with other
methods. In addition, both Rueda and Diaz-Uriarte (2010) and Shah
(2008) point out the importance of carefully planned simulation
studies in performance assessment of rCNA-algorithms.

This work has two goals: the description of a novel
rCNA-algorithm (GAIA) and the evaluation of rCNA-algorithm
performance. GAIA uses a discrete representation of the data to
perform a permutation test. A novel iterative procedure taking
into account both significance and within-sample homogeneity
(homogeneous peel-off) is used to identify the most significant
peaks. In Section 3, we present a careful comparison of rCNA-
algorithms both on synthetic data and on real aCGH dataset.
Synthetic data are generated in agreement to three typical patterns of
recurrent CNAs so that quantitative comparison can be performed
in a variety of well-defined simulated datasets. We also use two
recently published real datasets to evaluate the results of compared
algorithms. The first dataset is on colorectal cancer: current
knowledge can be used to compare and validate the considered
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Fig. 1. In (A), an example of matrix D: 0 denotes no alteration, + denotes gain and − denotes loss. In D there are two homogeneous regions from probes P4
to P6 for samples S1, S2 and S3 and from probes P5 to P7 for samples S3, S4 and S5 (blue and green squares, respectively). In (B) and (C), the matrices DL

and DG of the matrix in (A) are shown. In (D), the q-value configuration for DL before the first iteration of peel-off. In (E), the q-value configuration for DL

after that the peak P5–P6 has been removed by standard peel-off. In (F), the h-values for the matrix D in (A). In (D) and (E), red line represents the q-value
significance threshold (qthr), and in (F) red line represents the h-value threshold (hthr).

algorithms. The second dataset refers to gastrointestinal stromal
tumor for which well-known aberrant cytobands are used to perform
the comparison. In this dataset for each sample, >1.6 million
of probes are measured, so it can also be used to validate the
performance of the algorithms in terms of execution time.

2 METHODS
In general, the data analysis process of a large-scale CNA experiment can
be described as reported in Supplementary Figure SF4, and GAIA can be
summarized as a procedure containing two main steps:

• Significance testing: it consists of computing the statistical significance
of observed genomic aberrations among various samples at a given site,
under the null hypothesis that a given genomic locus is not a site of a
recurrent CNA. The distribution of the test statistics under of the null
hypothesis (null distribution) is computed by random permutations.

• Homogeneous peel-off: the peel-off is an iterative procedure aimed at
the identification of significant peaks in a region, the selected peaks are
iteratively removed by the set of significant locations and the remaining
significance values are corrected by FDR (Storey et al., 2004). The
procedure continues until no further peak above the significance
threshold remains. Here, we propose a novel peel-off procedure taking
into account both the statistical significance and the homogeneity
within samples.

2.1 GAIA
The input data are obtained by an external segmentation procedure having
in charge the assignment of a label (i.e. loss, normal and gain) to each probe.
The data are arranged as a matrix D of dimensions N ×M (N is the number
of samples and M the number of observed probes). Figure 1A shows a simple
example of matrix D for a chromosome having eight observed probes and
for a dataset composed of five samples. The matrix D is split in two matrices
DL and DG where the element dij ∈DL (DG) i=1,··· ,N and j=1,··· ,M, is
set to 1 when a loss (gain) is found in the j-th marker of the i-th sample,
while is set to 0 otherwise. Figures 1B and C show the matrices DL and DG

of the matrix D reported in Figure 1A.

Significance testing: the detection of recurrent CNA sites is performed
through a test procedure where the null hypothesis can be intuitively stated
as H0: the j-th probe is not a site of a recurrent CNA. More formally, if µ is
the number of CNA in a site and µ0 is the expected count when no recurrent
aberration is present in a site, then H0: µ=µ0 VS H1: µ>µ0.

The adopted test statistic X is the stochastic version of the counts xj =∑N
i=1 dij of the loss-aberrations observed in the j-th site. When the interest

is on the gains, the DG matrix has to replace DL . In both cases, the steps
for assessing the significance are the same. The j-th probe can be considered
as a site of CNA (rejection of H0) when the corresponding xj is beyond a
critical value c at a given level of significance.

The sampling distribution under the null hypothesis is approximated by
adopting a shuffling scheme similar to that of permutation test (Westfall
and Young, 1993). The algorithm for the approximation is described by
considering the loss-alteration. Let D(k)

L be a matrix obtained by applying
a random permutation to each row of DL , and let P̂(k)(x) the empirical
probability function estimated on the x(k)

1 , x(k)
2 , …, x(k)

M , where x(k)
j =

∑N
i=1 d(k)

ij . If K is the total number of the D(k)
L ’s considered, then the

approximate distribution of X given H0 is

P(x)= 1

K

K∑

k=1

P̂(k)(x).

The decision of rejecting H0 is based on the q-values (Storey et al., 2004),
which are a corrected version of the P-values

pj =P[X ≥xj]=
N∑

x=xj

P(x)

that are computed for each site.

Homogeneous peel-off: peel-off is an iterative procedure aimed at the
identification of significant peaks of a region. Peel-off uses the q-value’s
computed by the FDR and in each iteration it selects and extracts a new peak
and increases to 1 the p-value correspondent to the selected probes. In the next
iteration, peel-off applies the FDR on this new configuration of p-values and
finishes if no significant peak exists. A peak is considered significant if its q-
value is lower than a fixed threshold qthr. In the standard peel-off (Beroukhim
et al., 2007), the selected peak is the one having minimum q-value. As we
will see, the problem of this approach is that it tends to identify just one peak
of a region omitting the adjacent significant peaks.

In several biological studies, it was observed that cancer is remarkably
homogeneous in its copy number profile (Beroukhim et al., 2009; Sartore-
Bianchi et al., 2007; Snijders et al., 2003). For this reason, within-
sample homogeneity can represent a source of information allowing to
predict CNA regions which are more consistent with the underlying
biological phenomenon. Here we propose a new variant of peel-off, called
homogeneous, where significant peaks are selected by using the concept of
within-sample homogeneity.
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Here, as in van de Wiel et al. (2007) we define a homogeneous region
as a sequence of contiguous probes which for every sample are (almost)
constant. Given a matrix D, we say that two adjacent probes have a maximum
homogeneity when they have the same state, on the other hand two adjacent
probes have a medium homogeneity when a probe has a normal state and
the other one has an aberrant state (loss or gain) and, finally, two adjacent
probes have the minimum homogeneity when they have opposite states. For
the matrix D depicted in Figure 1A, in the Sample S2 the pair P4–P5 has
maximum homogeneity, the pair P1–P2 has medium homogeneity and the
pair P3–P4 has minimum homogeneity. In this way, in agreement with the
definition of within-sample homogeneity, we are focusing on the difference
in the state of two adjacent probes and not on the state of a single probe. Let
H be a matrix N ×M −1 where for each sample and for each pair of probes
of the matrix D the element Hij measures the degree of homogeneity between
the probes j and j+1 for the i-th sample. In particular, Hij has value 0, 0.5
and 1 for maximum, medium and minimum homogeneity, respectively. From
this matrix, we compute the overall homogeneity (h-value) as:

hj = 1

N

N∑

i=1

Hij, j=1,...,M −1 (1)

From the configuration of the h-values, we can obtain information on the
homogeneity of the dataset. In the case in which hj =0, we know that each
sample has the same state for the probes j and j+1; in contrast, where we
have hj =1 we know that each sample has opposite states for those probes.
Homogeneous peel-off works in the following way: let l and m be the indices
representing, respectively, the left and the right boundary of the peak with
minimum q-value, where 1≤ l,m≤M, we expand the left boundary of the
region if:

ql−1 ≤qthr AND hl−1 ≤hthr (2)

and we expand the right boundary if:

qr+1 ≤qthr AND hr ≤hthr (3)

The procedure iteratively expands the boundaries of the region until the above
conditions are satisfied. The value of hthr represents an important parameter
for homogeneous peel-off, in fact imposing hthr =0 the computation follows
the same scheme of standard peel-off, in contrast by imposing hthr =1 the
whole significant region will be extracted obtaining many spurious peaks. A
value 0<hthr <1 accounts for the amount of contextual information adopted
to measure the homogeneity.

Consider the example in Figure 1A, of course probes P5 and P6 represent
two recurrent CNAs, but we can notice that there are two homogeneous
regions included between blue and green squares. By using standard peel-off
only the peak overlapping probes P5–P6 is extracted. Indeed, in the first
iteration we have the q-value distribution of Figure 1D and peel-off removes
peak P5–P6. At the next iteration, the new q-value configuration is the one
reported in Figure 1E where no significant peak exists (all probes have a
q-value greater than the significance threshold of 0.25 represented by the
red line) and peel-off ends. If we increase the value of qthr standard peel-
off captures probes P3, P4 and P7 but in this case P3 represents a spurious
peak. In other words, in standard peel-off adjacent significant peaks can be
extracted by an increase of the significance threshold, but in consequence of
this increment spurious peaks are also detected. To overcome this limitation
in JISTIC (Sanchez-Garcia et al., 2010), a variant of peel-off, called limited,
was proposed. In JISTIC, neighboring probes of a significant peak are also
considered. It has been demonstrated that limited peel-off allows to obtain
more accurate results than standard peel-off, but this approach also suffers
from the effect of spurious peaks. For the example depicted in Figure 1A,
JISTIC identifies the region P4–P7 but it also extracts the false peak located
in P3 (more detail on JISTIC are provided in the following).

In contrast to standard and limited peel-off, GAIA extracts only the region
P4–P7. Figure 1F shows the h-value configuration for the data of Figure 1A
where the red line represents the hthr. GAIA starts from the peak P5–P6
(the peak having minimum q-value) and when it tries to expand the detected
region on the right side it finds that in P6 the condition in (3) is satisfied and

the right boundary of the region is moved in P7. In P7, the condition (3) is
false both for the q-value and for the h-value and GAIA stops the expansion
on the right side. In P5, the condition (2) for the left boundary is satisfied
and the left boundary is moved in P4, when the condition (2) is tested in P4
it is found true for the q-value but false for the h-value so the expansion is
stopped. In this way, GAIA is able to detect the peak covering the probes
P4–P7 omitting the spurious peak in P3.

2.2 GISTIC and JISTIC
JISTIC (Sanchez-Garcia et al., 2010) is a variant of the previously published
rCNA-algorithm GISTIC (Beroukhim et al., 2007). These algorithms use
smoothed LRRs to compute a statistic (G-score) representing the strength
of the aberration of each probe. The computed G-score is compared with
the one expected by chance using a permutation test, where significance is
corrected by the FDR proposed in Benjamini and Hochberg (1995). JISTIC
and GISTIC differ in their peel-off procedure. As explained before, standard
peel-off of GISTIC simply extracts the peak of a region with the minimum
q-value, in contrast, limited peel-off proposed in JISTIC also considers the
probes close to the selected peak. In particular, JISTIC decomposes the
G-score for a probe in two parts: one representing what remains from the
selected peak (Gr ) and another part that is the complementary of Gr (Gn),
which considers the independent contribution of the peak. JISTIC considers
any reduction in the aberration that is consistent for a fixed number of
adjacent probes within a window of fixed size. A new peak is detected
if within the window a probes exists for which Gn is lower then a fixed
threshold. Sanchez-Garcia et al. (2010) demonstrated that JISTIC performs
better than GISTIC in terms of specificity and recall, so we chose to use
JISTIC instead of GISTIC to perform the comparisons.

Although GAIA is similar to GISTIC and JISTIC, some important
differences exist. The first difference is on the input data: JISTIC and GISTIC
directly work on the LRRs; in contrast, GAIA works on the list of aberrant
regions with the respective labels; it uses a discrete representation of the
data. Indeed, another important difference is on the method used to obtain the
derivation of the null distribution. Although all algorithms use a permutation
test, GISTIC and JISTIC derive a semiexact estimate of this null distribution
by using a convolution of histograms, while GAIA explicitly performs the
permutations. But of course the most important difference is the peel-off
procedure. It is important to notice that the proposed homogeneous peel-off
can be applied only if a discrete representation of the data is used. JISTIC is
implemented as a platform-independent Java application and it can be easily
adapted for working on synthetic and real aCGH data.

2.3 GADA
In GADA (Pique-Regi et al., 2009), the observed LRR is decomposed into
three components: the change in hybridization due to altered copy number,
the reference hybridization intensity for non-aberrant probes and the noise
component modeled as a zero-mean Gaussian process. The basic assumption
of GADA is that the copy number hybridization component is piece wise
constant with a small number of regions. GADA uses a sparse Bayesian prior
different for each sample and an expectation maximization (EM) algorithm to
jointly estimate the model parameters. An hyperparameter is used to control
the expected degree of sparseness and in order to efficiently explore solutions
with different levels of sparseness, a backward elimination procedure is
applied: breakpoints separating two regions are removed if they have a score
lower then a fixed threshold. GADA is available as an R package.

2.4 cghMCR
cghMCR (Aguirre et al., 2004) is a rCNA-algorithm where smoothed data
are used to distinguish between normal and altered probes. In particular,
segments above the 97th or below the 3rd percentile are considered altered
(note that this way a discretized representation of the data is obtained); altered
segments are joined if they are either adjacent or separated by a segment
<500 kb. cghMCR considers as ‘informative’ segments < 20 Mb and among
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them it returns all regions that are found aberrant in at least 75% of samples.
This threshold represents a fundamental parameter for the algorithm and the
user can change it and obtain different results. Finally, segments separated
by just one probe are joined. cghMCR was developed to be applied on a real
aCGH dataset of pancreatic adenocarcinoma and it allowed the rediscovery
of known aberrant cytobands and the identification of undescribed CNAs.
cghMCR is available as an R/Bioconductor package.

2.5 Other rCNA-algorithms
In this section, we provide a brief review of rCNA-algorithms. The work of
Rouveirol et al. (2006) represents one of the first efforts in the development
of a rCNA-algorithm. In their work, the authors describe two approaches,
called MAR and CMAR, where discrete data profiles are used to search
for rectangles delimiting probes having the same aberrant state. Authors
used an approach widely applied in Data Mining, in the area of frequent
itemset mining. CMAR differs from MAR by the usage of a set of boundary
constraints. CGHregions (van de Wiel et al., 2007) accepts as inputs discrete
labels for each observed probe and by a matrix dimension reduction it
identifies patterns of probes that remain (almost) constant. CGHregions also
attempts to focus the analysis of aCGH data on the change of the state
between adjacent probes and not on the state of a single probe. In this
work, the performance of CGHregions are not evaluated because it was
not designed for the discovery of recurrent CNAs, but it rather computes
homogeneous regions over the subjects. In KC-SMART (Klijn et al., 2008),
positive and negative LRRs are separately summarized across the samples.
In this approach, a flat top Gaussian kernel function is used to perform
locally weighted regression and to produce a smoothed estimation of the
CNAs. pREC-A and pREC-S (Rueda and Diaz-Uriarte, 2009) are two rCNA-
algorithms that, starting from observed LRRs, use a Hidden Markov Model
to identify recurrent CNAs. In particular, these approaches compute the joint
probabilities of alteration for a sequence of adjacent probes, that is, for each
sample they compute the probabilities that the same kind of aberration is
found in a subset of consecutive adjacent probes. BSA (Yang et al., 2009)
uses a Bayesian hierarchical model based on the assumption that copy
number observations for different subjects at different genomic positions
are independent conditional on the boundaries. BSA sequentially detects the
boundaries of aberrant segments and it ends if the average of the highest
sample mean of candidate segments is less than a fixed threshold. MPCBS
(Zhang et al., 2010) enables the detection of CNA from multiple platforms
(i.e. Affymetrix, Agilent and Illumina) providing in output a ‘multi-platform
consensus’ score for each probe. Generally, results from multiple platforms
are combined after the segmentation; in contrast, in MPBCS the statistical
evidence is directly computed across platforms in the segmentation step.
CNAnova (Ivakhno and Tavaré, 2010) is based on the assumption that the
dataset is divided into a reference set of normal individuals and a set of
cancer samples. Based on this assumption and starting from the observed
LRRs, it computes the distribution of the F- and t-statistics by using the
one-way analysis of variance (ANOVA). Boundaries of CNA regions are
detected by a gradient kernel density estimation and the FDR is used to
identify significant regions. DiNAMIC (Walter et al., 2011) is a recently
published rCNA-algorithm that works either on discrete or on continuous
segmented data and implements a cyclic shift procedure to compute the null
distribution. DiNAMIC can be applied in the analysis of data from individual
chromosome or genome wide and it uses a peel-off procedure to extract the
final list of CNAs. Here just JISTIC, GADA and cghMCR will be considered
for comparison purposes.

2.6 Segmentation of aCGH data
Segmentation represents the first analysis step for many rCNA-algorithms.
Aim of a segmentation algorithm is the identification of breakpoints in the
genome that identify regions in which probes have a similar copy number
profile or share the same state. GAIA needs segmented input data where a
discrete label (i.e. loss, normal and gain) is assigned to each region. In order

to provide this input we used VEGA, a segmentation algorithm presented in
our previous work (Morganella et al., 2010). Also JISTIC needs segmented
data; in particular, it requires as input a list of regions spanning the whole
genome with the respective smoothed mean. For this reason, in the original
paper of GISTIC, authors used the GLAD segmentation algorithm (Hupé
et al., 2004), and hence we used GLAD also for JISTIC. In order to perform
a fair comparison between JISTIC and GAIA, we also used VEGA to provide
input data for JISTIC. Smoothed data also represent the input for cghMCR.
The R/Bioconductor package implementing cghMCR uses a segmentation
algorithm known as DNAcopy (Olshen et al., 2004).

3 RESULTS
For real data, the ground truth of CNA is not available, so in order
to perform a qualitative evaluation of rCNA-algorithms we need to
extract from biological studies a list of verified CNAs. Although
this list can contain CNAs that are not present within the analyzed
dataset, it can be efficiently used to have an idea about the results
obtained by the rCNA-algorithms. To overcome the limitations
occurring on the evaluation performed on real data, we generated
synthetic data for which the ground truth is available in order to
perform a quantitative assessment.

In order to run the rCNA-algorithms on the considered data,
the respective input parameters must be chosen. GAIA has just
two main parameters: the significance threshold (qthr) and the
homogeneity threshold (hthr) for which we used values 0.25 and
0.12, respectively. This parameter setting has been used both on
synthetic and real data. These parameters can be considered as
algorithm driven and do not need to be selected on the basis of
the dataset. In JISTIC, six parameters must be specified and the
default setting suggested by authors has been used to perform all
comparisons. On real data, both GADA and cghMCR were used
with the suggested parameter configuration, in contrast on synthetic
data we perform a parameter tuning in order to obtain the best
performance for these algorithms. In the Supplementary Material,
more details about the parameter settings are provided.

3.1 Synthetic dataset
Generation strategy: we generated synthetic data according to
three main scenarios (Supplementary Fig. SF1), because they
represent the fundamental patterns that are found in real datasets
(Rueda and Diaz-Uriarte, 2010), and many other scenarios can be
considered as a combination of these three patterns. Scenario I is the
simplest case of recurrent CNA regions: there is a recurrent region
sharing the same position in all samples. In Scenario II, there are two
non-overlapping CNA regions that differ in the kind of aberration
and in the fraction of affected subjects (40% of samples show a loss
and 60% of samples show a gain). Finally, Scenario III is a hybrid
of Scenarios I and II: different aberrations share the same position
and each of them affects only a fraction of the subjects.

For each selected Scenario, we simulated a chromosome of 1000
probes considering different CNA widths (100, 200 and 400). In
each dataset, both position and kind of the CNA were randomly
chosen and the unbiased LRRs for loss, normal and gain were
considered to be log2( 1

2 )=−1, log2( 2
2 )=0 and log2( 3

2 )=0.58,
respectively. From this unbiased dataset, we generated perturbed
datasets by using two different noise models. The first model is
an intensity noise affecting the values of unbiased LRRs which is
assumed to follow a white Gaussian distribution ∼N (0,σ), while
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Fig. 2. Results on the synthetic dataset perturbed by both intensity and spatial noise. In each chart, x-axis is the SD σ of the white Gaussian process modeling
the intensity noise ∼N (0,σ) and y-axis reports the F-measure for all compared approaches. The values of α and β for the generation of the random resizing
and shifting are both set to 0.25

the second model represents a spatial noise that resizes and shifts the
location of the CNAs. This kind of perturbation could better model
biological noise and errors in the localization of the boundary of the
sample aberration induced by segmentation algorithms. Resizing
is modeled as multiplicative Gaussian noise ∼N (1,α·w) and the
random shifting of the middle position of the aberration is modeled
as a zero mean Gaussian ∼N (0,β) (w is the width of the CNA).
We generated two simulated datasets: the first perturbed with only
intensity noise, while the second synthetic dataset contains intensity,
resizing and shifting perturbations. Typical examples of this second
dataset is reported in Supplementary Figure SF2. We can see that
the second synthetic dataset is quite realistic and challenging. By
varying the value σ of the intensity noise (0, 0.25, 0.5, 0.75 and 1)
and by using α=β=0.25, we obtained a total of 2250 different
synthetic datasets which were used for comparison purposes.

Evaluation metrics: quantitative assessment is based on the
number of true positives (TP), false positives (FP) and false
negatives (FN). A TP occurs when the rCNA-algorithm correctly
detects a CNA for a probe contained into a simulated CNA region;
in contrast, if the detected CNA corresponds to a probe outside of the
simulated aberrant region, we have an FP. Finally, we have an FN
when the rCNA-algorithm does not detect an aberration for probes
located into a simulated CNA region. As a single figure of merit, we
calculate the F-measure representing harmonic mean of precision
(exactness) and recall (completeness).

Results: Figure 2 shows the F-measures obtained from the
synthetic dataset perturbed by both intensity and spatial noise, and
results are also summarized in Supplementary Table ST2. For GAIA,
two different values of hthr were used: 0 and 0.12, in particular hthr =
0 corresponds to standard peel-off. The reported experiments show
that in all considered cases GAIA produced more accurate results
by using within-sample homogeneity than the standard peel-off. As
expected, noise influenced performance of rCNA-algorithms and the

impact of noise was more evident in Scenario III where different
aberrations are overlapped. All approaches (except for cghMCR)
provided good results in all simulated scenarios and the width
of CNAs did not influence the respective performance. From the
performance of JISTIC, we can note that it produced more accurate
results by using VEGA rather than GLAD, and this observation
is particularly true for width of 100 and σ values of 0.75 and 1.
Results also show the ability of GADA in detection of simulated
CNAs. Another consideration is on the lower performance of
cghMCR, indeed, although we performed a tuning of the parameters,
this approach presented important difficulties in the detection of
simulated CNAs. In particular, we can notice that performance of
cghMCR improved as the width of the aberration increased. This
behavior was due to the large amount of FP produced by this
algorithm. However, cghMCR has the advantage to be very fast as
reported in Section 3.4. The performance trend highlighted on the
synthetic dataset perturbed by both noise models was also confirmed
by the results on the simpler dataset perturbed only by intensity noise
(Supplementary Fig. SF3 and Table ST1).

3.2 Results on colorectal cancer
Colorectal cancer (CRC) is one of the most common tumors and
many biological studies have been designed to characterize the
aberrations involved in this disease. These studies have generated
a list of verified CRC alterations that can be used to perform
a qualitative analysis of rCNA-algorithms on real aCGH data.
In this work, we analyzed a recently published CRC dataset
(Venkatachalam et al., 2011) extracted from 41 patients who were
diagnosed with microsatellite-stable CRC without polyposis. From
this dataset, we selected 30 samples that were hybridized on SNP
250k Affymetrix GeneChip arrays (data available in GEO with
identifier GSE13429). Raw data were preprocessed by PennCNV
tool (Wang et al., 2007).
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Fig. 3. Results on real aCGH data. In (A), results for CRC dataset on chromosome 8. In (B), results for GIST dataset on chromosome 14. Green and red
indicate loss and gain, respectively.

Development of CRC is a multistep process that involves
an accumulation of mutations in tumor suppressor genes and
oncogenes. One of the earliest trigger genetic event in CRC is
the inactivation of the APC, a tumor suppressor gene antagonist
of Wnt signaling pathway (Locker et al., 2006). Other evidences
in CRC are mutations of the well-known tumor suppressor gene
PTEN and high-level amplifications at 20q13.2 containing the
target gene STK6 (Nakao et al., 2004). Methylation of CDKN2A
and P16 were detected in CRC (Goto et al., 2009) and loss of
UNC5C expression was observed in 68% of primary CRC (Bernet
et al., 2007). The list of all considered aberrations is reported in
Supplementary Table ST3a. GAIA and JISTIC + VEGA produced
nearly the same number of cytobands (184 and 182, respectively),
JISTIC + GLAD computed 39 cytobands, cghMCR detected 587
cytobands with a recurrence threshold of 50% (increasing this
value to 60% only six cytobands were obtained and with the
default value of 75% no aberrations were found) and GADA
returned nine cytobands (Supplementary Table ST3a). From the
results in Supplementary Table ST3a, we can note that GADA
and JISTIC + GLAD had significant difficulties in the detection
of the considered CNAs. In contrast GAIA, JISTIC + VEGA
and cghMCR produced a list of aberrations consistent to the
biological evidence, but some disagreements with the expected
aberrations were found. In particular, for cghMCR some biological
contradictions were observed, among them the gain of PTEN
cytoband may be considered a false evaluation. JISTIC + VEGA was
in agreement with the biological evidence in 57% of cases, while
both GAIA and cghMCR correctly identified 64% of mutations, but
cghMCR produced more than three times the number of cytobands
of GAIA. In Figure 3A, the results produced on the chromosome 8
by all considered approaches are reported. This chromosome was
chosen because the loss of 8p23.1 is the only mutation detected by

all rCNA-algorithms (except for GADA). From this figure, we can
notice that both GAIA and JISTIC produced narrow aberrations; in
contrast, cghMCR found the whole chromosome as lost and GADA
did not detect any aberrations.

3.3 Results on gastrointestinal stromal tumor
Gastrointestinal stromal tumors (GISTs) are the most common
mesenchymal tumors of the gastrointestinal tract. We used the
data published by Astolfi et al. (2010) where 25 fresh tissue
specimens of GISTs were collected and hybridized by Affymetrix
Genome Wide SNP 6.0 (GEO identifier GSE20710). Raw data
were preprocessed by PennCNV tool (Wang et al., 2007) obtaining
the LRR for ∼1.6 million of probes. In order to qualitatively
investigate the performance of the compared approaches, as above,
we used some well-known cytogenetic aberrations characterizing
GIST (Supplementary Table ST3b). In particular, loss of cytobands
14q11.2, 14q32.33, 22q12.2 and 22q13.31 appears to play an
important role in the early stage of tumor formation and in late
tumor progression (Ässämäki et al., 2007; Lasota et al., 2005).
Cytogenetic losses of 1p36.23 and 9p21.3 have also been related
with GISTs (Ässämäki et al., 2007; Perrone et al., 2005) and gains of
7p11.2 and 12q15 were confirmed by in situ hybridization (Tornillo
et al., 2005).

The first observation is about the number of computed cytobands
(Supplementary Table ST3b): GAIAdetected 272 cytobands, JISTIC
+ VEGA detected 577 cytobands, JISTIC + GLAD detected 548
cytobands, cghMCR detected 320 cytobands and GADA detected
698 cytobands. For GADA, the recurrence parameter was set to 65%;
with the default value of 75% no significant result was obtained
and decreasing this threshold to 50% resulted in the detection of
>2.5 billion of aberrant probes. From Supplementary Table ST3b,
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we can see that cghMCR and GADA were the only approaches
that detected the gain in 12q15, but cghMCR failed to detect all
other aberrations except for 9p21.3 and 8q24.21. GADA performed
well on GIST dataset but there are several cytobands which were
reported both as loss and as gain (9p21.3, 14q11.2, 14q32.33, 7p11.2
and 22q13.31). Also on GIST, the segmentation produced by VEGA
allowed JISTIC to obtain more consistent results than GLAD. But
JISTIC had the same anomalies of GADA in cytobands 14q11.2,
14q32.33, 22q13.31 and 8q24.21 which were found both in loss and
in gain. In Figure 3B, the results produced on the chromosome 14 are
reported. From this figure, it is evident that both JISTIC and GADA
identified very large aberrations, in contrast GAIA and cghMCR
detected narrow CNAs. Another consideration is that JISTIC and
GADA found the whole long arm chromosome both in gain and in
loss, highlighting the previously described problem.

3.4 Computational aspects
The actual implementation of GAIA processes one chromosome at
time. In GAIA, the most expensive operation is the computation of
the null distribution by the permutation test. Let N be the number of
samples and M the number of observed probes, GAIArequires a time
O(NMK) where K is the number of performed permutations. JISTIC
uses the same scheme of GAIA, but it needs to compute for each
sample and for each probe the respective G-score: this operation
requires a linear time of O(NM). Moreover, in JISTIC the null
distribution is computed by a convolution of histograms that requires
a time of O(MH2), H is the number of bins of the histogram. So
the overall time required by JISTIC is O(M(N +H2)). In cghMCR,
a linear number of steps is required O(NM), indeed, it simply
performs a counting of the number of alteration for each probe.
Finally, the time required by GADA depends on the convergence
of the EM algorithm used to estimate the parameters of the model.
Each iteration of EM can be performed in linear time and the overall
complexity is O(NMT ) where T is the number of iterations to reach
the convergence.

A significant improvement in the performance of GAIA, with
a complexity of O(NK), can be obtained by considering an
approximation of the null distribution. In particular, after computing
the frequency of alteration for each sample θj , we can simulate a
matrix with dimension N ×K where each column is a vector in
which the element j has a probability for drawing 1 equal to θj .
This asymptotically approximates the original simulation for large
M and K .

Supplementary Table ST4 reports the execution times for the
compared algorithms. An important consideration is the fact that
reported times depend on the respective software packages and,
of course, a careful implementation (e.g. by using ad hoc data
structures) can notably improve the performance of algorithms.
Reported execution time of cghMCR is related to the counting of
the aberrations, and it does not contain neither the time required by
the segmentation (that can be very long) nor the time required to
produce a formatted output. Execution time of GADA is improved
by calling, from R, a function written in C. In JISTIC, the generation
of the needed input matrix file from smoothed data is not considered
for calculation of execution time. Finally, reported execution time
of GAIA includes both data loading and formatted output file
construction. From Supplementary Table ST4, the computational

improvement induced by the approximation of the null distribution
is evidenced.

4 DISCUSSION
GAIA uses within-sample homogeneity to obtain results consistent
with the biological nature of copy number profiles and the reported
results suggested that this heuristic can improve the accuracy.
Extensive comparison on simulated data allowed the observation
of the behavior of the considered algorithms. GADA seemed to
be particularly robust with respect to noise. GAIA and JISTIC
had comparable performance with a slight advantage for GAIA
and finally less accurate performance were obtained by cghMCR.
Analysis of two real aCGH datasets suggested an important
observation: approaches directly working on LRR were strongly
affected by the chip resolution. In particular, both for JISTIC and
GADA the number of identified regions increased with increasing
resolution. In contrast, GAIA, which uses a discrete representation
of the data, resulted in a stable estimate of the number of computed
regions with respect to the chip resolution. Results on synthetic and
real aCGH data showed that cghMCR produced several spurious
peaks as also observed in Rueda and Diaz-Uriarte (2010). Another
important aspect pointed out by our analysis is on the execution
time. cghMCR was very fast but it simply performs a counting of
the number of alteration for each probe. Execution time of GADA is
related to the convergence of the EM algorithm used to estimate the
parameters of the model. Convergence is slower in high-resolution
scenarios, but its execution time seemed to be good. Finally, both
GAIA and JISTIC use a conservative permutation model to compute
the distribution of the null hypothesis. In its approximated version,
GAIA seems to be faster than JISTIC. But GAIA had also an
acceptable computational time (1 h in the largest dataset) when it
explicitly performs the permutations. We also highlighted the fact
that the list of computed CNAs must be integrated with information
measuring the strength of evidence of aberrations (i.e q-value).
Indeed, this information can be used to resolve ambiguous results
(this is the case of JISTIC and GADA on GIST dataset where
regions were found both in loss and in gain) and to choose CNAs
representing the target of further biological investigations.

Although our methodology can be subject to further
improvements, our opinion is that GAIA is a valid alternative
to other rCNA-algorithms, especially for the analysis of high-
resolution aCGH data. Indeed, the performed analysis showed that
GAIA can be particularly useful for high-resolution data which have
been already segmented (as for example TCGA CNA data). Indeed,
we report a better stability with respect to the number of detected
regions in different resolution scenarios. In other words, the amount
of false positives produced is not related to the resolution, and
this contrasts noticeably with the rCNA-algorithms considered
for comparison. In addition, when GAIA used an approximated
approach to compute the null distribution, the processing of large
amount of data is faster than other approaches based on significance
analysis. We also pointed out the fact that, of course, accurate
tuning of the input parameters can significantly improve the results
of the rCNA-algorithms. But often, this tuning involves many
parameters and their perfect combination is very hard to reach.
Therefore, another very important advantage of GAIA is that in
contrast to other considered rCNA-algorithms, it requires just
two input parameters. Finally, although in literature discretization
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of LRR data has been criticized because of the potential loss of
information it entails, the results presented here show that if we
feel confident (as we were for VEGA, but in general this occurs
in high-resolution scenario) on the region labeling performed by
the segmentation algorithm, we can produce more accurate list of
CNAs than algorithms working directly on the LRR which have
the problem that smoothed LRRs might not be comparable across
the arrays.

5 CONCLUSION
Recurrent CNAs represent a very important source of information
about genetic diseases like cancer, and rCNA-algorithms can be
used to find significant associated aberrations. In this work, a new
rCNA algorithm has been presented and a performance analysis of
rCNA-algorithms was performed. Results showed that joint analysis
of all available samples without a preprocessing segmentation step
(as in GADA) can improve robustness respect to noise and that
within-sample homogeneity can be used to increase the accuracy of
the results. In addition, we point out two interesting strong points
of GAIA: its ability in working on high-resolution data and its
parameter setting that is very straightforward.
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