4 research outputs found

    V2: Integrated management of rainwater for crop-livestock agroecosystems

    Get PDF
    With mixed crop-livestock systems projected to remain the main providers of food in the coming decades, opportunities exist for smallholders to participate and benefit from emerging crop and livestock markets in the Volta Basin. This project intends to identify, evaluate, adapt, and disseminate best-fit integrated rainwater management strategies (RMS), targeted to different biophysical and socio-economic domains. The integrated RMS are comprised of technological solutions, directed at different components of the agroecosystems, underpinned by enabling institutional and policy environments and linked to market incentives that can drive adoptio

    Process Proteomics of Beer Reveals a Dynamic Proteome with Extensive Modifications

    No full text
    Modern beer production is a complex industrial process. However, some of its biochemical details remain unclear. Using mass spectrometry proteomics, we have performed a global untargeted analysis of the proteins present across time during nanoscale beer production. Samples included sweet wort produced by a high temperature infusion mash, hopped wort, and bright beer. This analysis identified over 200 unique proteins from barley and yeast, emphasizing the complexity of the process and product. We then used data independent SWATH-MS to quantitatively compare the relative abundance of these proteins throughout the process. This identified large and significant changes in the proteome at each process step. These changes described enrichment of proteins by their biophysical properties, and identified the appearance of dominant yeast proteins during fermentation. Altered levels of malt modification also quantitatively changed the proteomes throughout the process. Detailed inspection of the proteomic data revealed that many proteins were modified by protease digestion, glycation, or oxidation during the processing steps. This work demonstrates the opportunities offered by modern mass spectrometry proteomics in understanding the ancient process of beer production

    Decoupling Livestock from Land Use through Industrial Feed Production Pathways

    No full text
    One of the main challenges for the 21st century is to balance the increasing demand for high-quality proteins while mitigating environmental impacts. In particular, cropland-based production of protein-rich animal feed for livestock rearing results in large-scale agricultural land-expansion, nitrogen pollution, and greenhouse gas emissions. Here we propose and analyze the long-term potential of alternative animal feed supply routes based on industrial production of microbial proteins (MP). Our analysis reveals that by 2050, MP can replace, depending on socio-economic development and MP production pathways, between 10–19% of conventional crop-based animal feed protein demand. As a result, global cropland area, global nitrogen losses from croplands and agricultural greenhouse gas emissions can be decreased by 6% (0–13%), 8% (−3–8%), and 7% (−6–9%), respectively. Interestingly, the technology to industrially produce MP at competitive costs is directly accessible for implementation and has the potential to cause a major structural change in the agro-food system

    Decoupling Livestock from Land Use through Industrial Feed Production Pathways

    No full text
    One of the main challenges for the 21st century is to balance the increasing demand for high-quality proteins while mitigating environmental impacts. In particular, cropland-based production of protein-rich animal feed for livestock rearing results in large-scale agricultural land-expansion, nitrogen pollution, and greenhouse gas emissions. Here we propose and analyze the long-term potential of alternative animal feed supply routes based on industrial production of microbial proteins (MP). Our analysis reveals that by 2050, MP can replace, depending on socio-economic development and MP production pathways, between 10–19% of conventional crop-based animal feed protein demand. As a result, global cropland area, global nitrogen losses from croplands and agricultural greenhouse gas emissions can be decreased by 6% (0–13%), 8% (−3–8%), and 7% (−6–9%), respectively. Interestingly, the technology to industrially produce MP at competitive costs is directly accessible for implementation and has the potential to cause a major structural change in the agro-food system
    corecore