169 research outputs found

    Leber's Hereditary Optic Neuropathy (LHON) Pathogenic Mutations Induce Mitochondrial-dependent Apoptotic Death in Transmitochondrial Cells Incubated with Galactose Medium

    Get PDF
    Leber's hereditary optic neuropathy (LHON), a maternally inherited form of central vision loss, is associated with mitochondrial DNA pathogenic point mutations affecting different subunits of complex I. We here report that osteosarcoma-derived cytoplasmic hybrids (cybrid) cell lines harboring one of the three most frequent LHON pathogenic mutations, at positions 11778/ND4, 3460/ND1, and 14484/ND6, undergo cell death when galactose replaces glucose in the medium, contrary to control cybrids that maintain some growth capabilities. This is a well known way to produce a metabolic stress, forcing the cells to rely on the mitochondrial respiratory chain to produce ATP. We demonstrate that LHON cybrid cell death is apoptotic, showing chromatin condensation and nuclear DNA laddering. Moreover, we also document the mitochondrial involvement in the activation of the apoptotic cascade, as shown by the increased release of cytochrome c into the cytosol in LHON cybrid cells as compared with controls. Cybrids bearing the 3460/ND1 and 14484/ND6 mutations seemed more readily prone to undergo apoptosis as compared with the 11778/ND4 mutation. In conclusion, LHON cybrid cells forced by the reduced rate of glycolytic flux to utilize oxidative metabolism are sensitized to an apoptotic death through a mechanism involving mitochondria

    Protection against oxidant-induced apoptosis by exogenous glutathione in Leber hereditary optic neuropathy cybrids

    Get PDF
    PURPOSE. To use different paradigms of oxidative and metabolic stress in a cellular model of Leber hereditary optic neuropathy (LHON), with the aim of evaluating the efficacy of potentially therapeutic molecules for the treatment of this disease. METHODS. Cybrids bearing one of the three most common LHON pathogenic mutations (11778/ND4, 3460/ND1, 14484/ ND6) were incubated with two compounds known to induce oxidative injury, tert-butyl hydroperoxide (t-BH) and rotenone. To mimic metabolic stress, cells were incubated in a glucosefree medium containing galactose. Cell viability was determined using the MTT assay. To identify the apoptotic type of cell death, nuclear morphology was examined after cell loading with Hoechst. Cellular glutathione (GSH), and oxidized glutathione (GSSG) levels were measured enzymatically. RESULTS. Incubation with t-BH caused apoptotic cell death of control and LHON cybrids, whereas only LHON cybrids were damaged by rotenone concentrations up to 2.5 M. Both types of stress caused a marked imbalance in the glutathione levels, but an increase in the GSSG/GSHÏ©GSSG ratio was detected only after rotenone treatment. The efficacy of several antioxidant and antiapoptotic compounds was then assessed in cells exposed to these two oxidative paradigms. Only exogenous GSH remarkably protected the t-BH-and rotenone-treated cybrids from cell death. In contrast, GSH was unable to increase the viability of cybrids exposed to metabolic stress. CONCLUSIONS. These results suggest that GSH is an effective antioxidant compound to be tested as a potential treatment for LHON. (Invest Ophthalmol Vis Sci. 2008;49:671-676

    The Background of Mitochondrial DNA Haplogroup J Increases the Sensitivity of Leber's Hereditary Optic Neuropathy Cells to 2,5-Hexanedione Toxicity

    Get PDF
    Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA) point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the 11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the 11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as Parkinson's disease

    Metabolomics hallmarks OPA1 variants correlating with their in-vitro phenotype and predicting clinical severity

    Get PDF
    Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1 12/ 12 MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1 12/ 12 MEFs metabolic signatures and classified OPA1 variants according to their in-vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1 12/ 12 MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in-vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment

    OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions

    Get PDF
    OPA1 is a GTPase that controls mitochondrial fusion, cristae integrity, and mtDNA maintenance. In humans, eight isoforms are expressed as combinations of long and short forms, but it is unclear whether OPA1 functions are associated with specific isoforms and/or domains. To address this, we expressed each of the eight isoforms or different constructs of isoform 1 in Opa1−/− MEFs. We observed that any isoform could restore cristae structure, mtDNA abundance, and energetic efficiency independently of mitochondrial network morphology. Long forms supported mitochondrial fusion; short forms were better able to restore energetic efficiency. The complete rescue of mitochondrial network morphology required a balance of long and short forms of at least two isoforms, as shown by combinatorial isoform silencing and co-expression experiments. Thus, multiple OPA1 isoforms are required for mitochondrial dynamics, while any single isoform can support all other functions. These findings will be useful in designing gene therapies for patients with OPA1 haploinsufficiency

    struttura 1-2-3-4

    No full text

    Esplorazione proteine I

    No full text

    mtDNA-nucleoidi

    No full text

    Dinamica-mitofusine

    No full text
    • …
    corecore