81 research outputs found

    Three are better than one: plasminogen receptors as cancer theranostic targets.

    Get PDF
    Activation of plasminogen on the cell surface initiates a cascade of protease activity with important implications for several physiological and pathological events. In particular, components of the plasminogen system participate in tumor growth, invasion and metastasis. Plasminogen receptors are in fact expressed on the cell surface of most tumors, and their expression frequently correlates with cancer diagnosis, survival and prognosis. Notably, they can trigger multiple specific immune responses in cancer patients, highlighting their role as tumor-associated antigens. In this review, three of the most characterized plasminogen receptors involved in tumorigenesis, namely Annexin 2 (ANX2), Cytokeratin 8 (CK8) and alpha-Enolase (ENOA), are analyzed to ascertain an overall view of their role in the most common cancers. This analysis emphasizes the possibility of delineating new personalized therapeutic strategies to counteract tumor growth and metastasis by targeting plasminogen receptors, as well as their potential application as cancer predictors

    Phosphoproteomic Analysis of Pancreatic Ductal Adenocarcinoma Cells Reveals Differential Phosphorylation of Cell Adhesion, Cell Junction and Structural Proteins

    Get PDF
    In this present work, we characterized the phosphoproteomes of pancreatic ductal adenocarcinoma (PDAC) cells and normal pancreatic duct cells by mass spectrometry using LTQ-Orbitrap. We identified more than 700 phosphoproteins from each sample, and revealed differential phosphorylation of many proteins involved in cell adhesion, cell junction, and cytoskeleton. Since post-translational phosphorylation is a common and important mechanism of acute and reversible regulation of protein function in mammalian cells, an understanding of differential phosphorylation of these proteins and resulting signal transduction changes in PDAC will help in comprehending the complex dynamics of tumor invasion and metastasis in pancreatic cancer

    Establishing surveillance areas for tackling the invasion of Vespa velutina in outbreaks and over the border of its expanding range

    Get PDF
    The yellow-legged hornet Vespa velutina is an invasive alien species in many areas of the world. In Europe, it is considered a species of Union concern and national authorities have to establish surveillance plans, early warning and rapid response systems or control plans. These strategies customarily require the assessment of the areas that could be colonised beyond outbreaks or expanding ranges, so as to establish efficient containment protocols. The hornet is spreading through a mix of natural diffusion and human-mediated transportation. Despite the latter dispersion mode is hardly predictable, natural diffusion could be modelled from nest data of consecutive years. The aim of this work is to develop a procedure to predict the spread of the yellow-legged hornet in the short term in order to increase the efficiency of control plans to restrain the diffusion of this species. We used data on the mean distances of colonial nests between years to evaluate the probability of yellow-legged hornet dispersal around the areas where the species is present. The distribution of nests in Italy was mainly explained by elevation (95% of nests located within 521 m a.s.l.) and distance from source sites (previous years’ colonies; 95% within 1.4–6.2 km). The diffusion models developed with these two variables forecast, with good accuracy, the spread of the species in the short term: 98–100% of nests were found within the predicted area of expansion. A similar approach can be applied in areas invaded by the yellow-legged hornet, in particular beyond new outbreaks and over the border of its expanding range, to implement strategies for its containment. The spatial application of the models allows the establishment of buffer areas where monitoring and control efforts can be allocated on the basis of the likelihood of the species spreading at progressively greater distances

    Establishing surveillance areas for tackling the invasion of Vespa velutina in outbreaks and over the border of its expanding range

    Get PDF
    The yellow-legged hornet Vespa velutina is an invasive alien species in many areas of the world. In Europe, it is considered a species of Union concern and national authorities have to establish surveillance plans, early warning and rapid response systems or control plans. These strategies customarily require the assessment of the areas that could be colonised beyond outbreaks or expanding ranges, so as to establish efficient containment protocols. The hornet is spreading through a mix of natural diffusion and human-mediated transportation. Despite the latter dispersion mode is hardly predictable, natural diffusion could be modelled from nest data of consecutive years. The aim of this work is to develop a procedure to predict the spread of the yellow-legged hornet in the short term in order to increase the efficiency of control plans to restrain the diffusion of this species. We used data on the mean distances of colonial nests between years to evaluate the probability of yellow-legged hornet dispersal around the areas where the species is present. The distribution of nests in Italy was mainly explained by elevation (95% of nests located within 521 m a.s.l.) and distance from source sites (previous years' colonies; 95% within 1.4–6.2 km). The diffusion models developed with these two variables forecast, with good accuracy, the spread of the species in the short term: 98–100% of nests were found within the predicted area of expansion. A similar approach can be applied in areas invaded by the yellow-legged hornet, in particular beyond new outbreaks and over the border of its expanding range, to implement strategies for its containment. The spatial application of the models allows the establishment of buffer areas where monitoring and control efforts can be allocated on the basis of the likelihood of the species spreading at progressively greater distances

    Immune-Complexome Analysis Identifies Immunoglobulin-Bound Biomarkers That Predict the Response to Chemotherapy of Pancreatic Cancer Patients

    Get PDF
    Pancreatic Ductal Adenocarcinoma (PDA) is an aggressive malignancy with a very poor outcome. Although chemotherapy (CT) treatment has poor efficacy, it can enhance tumor immunogenicity. Tumor-Associated Antigens (TAA) are self-proteins that are overexpressed in tumors that may induce antibody production and can be PDA theranostic targets. However, the prognostic value of TAA-antibody association as Circulating Immune Complexes (CIC) has not yet been elucidated, mainly due to the lack of techniques that lead to their identification. In this study, we show a novel method to separate IgG, IgM, and IgA CIC from sera to use them as prognostic biomarkers of CT response. The PDA Immune-Complexome (IC) was identified using a LTQ-Orbitrap mass spectrometer followed by computational analysis. The analysis of the IC of 37 PDA patients before and after CT revealed differential associated antigens (DAA) for each immunoglobulin class. Our method identified different PDA-specific CIC in patients that were associated with poor prognosis patients. Finally, CIC levels were significantly modified by CT suggesting that they can be used as effective prognostic biomarkers to follow CT response in PDA patients

    Sphingomyelin as a myelin biomarker in CSF of acquired demyelinating neuropathies

    Get PDF
    Fast, accurate and reliable methods to quantify the amount of myelin still lack, both in humans and experimental models. The overall objective of the present study was to demonstrate that sphingomyelin (SM) in the cerebrospinal fluid (CSF) of patients affected by demyelinating neuropathies is a myelin biomarker. We found that SM levels mirror both peripheral myelination during development and small myelin rearrangements in experimental models. As in acquired demyelinating peripheral neuropathies myelin breakdown occurs, SM amount in the CSF of these patients might detect the myelin loss. Indeed, quantification of SM in 262 neurological patients showed a significant increase in patients with peripheral demyelination (p\u2009=\u20093.81\u2009*\u200910\u2009-\u20098) compared to subjects affected by non-demyelinating disorders. Interestingly, SM alone was able to distinguish demyelinating from axonal neuropathies and differs from the principal CSF indexes, confirming the novelty of this potential CSF index. In conclusion, SM is a specific and sensitive biomarker to monitor myelin pathology in the CSF of peripheral neuropathies. Most importantly, SM assay is simple, fast, inexpensive, and promising to be used in clinical practice and drug development
    • …
    corecore