13 research outputs found

    The use of AVF.SIM system for the surgical planning of arteriovenous fistulae in routine clinical practice

    No full text
    Background: The number of patients treated with hemodialysis (HD) in Europe is more than half a million and this number increases annually. The arteriovenous fistula (AVF) is the vascular access (VA) of first choice, but the clinical outcome is still poor. A consistent number of AVFs fails to reach the desired blood flow rate for HD treatment, while some have too high flow and risk for cardiac complications. Despite the skill of the surgeons and the possibility to use Ultrasound investigation for mapping arm vasculature, it is still not possible to predict the blood flow volume that will be obtained after AVF maturation. Methods: We evaluated the potential of using a computational model (AVF.SIM) to predict the blood flow volume that will be achieved after AVF maturation, within a multicenter international clinical investigation aimed at assessing AVF.SIM predictive power. The study population included 231 patients, with data on AVF maturation in 124 patients, and on long-term primary patency in 180 patients. Results: At 1 year of follow-up, about 60% of AVFs were still patent, with comparable primary patency in proximal and distal anastomosis. The correlation between predicted and measured blood flow volume in the brachial artery at 40 days after surgery was statistically significant, with an overall correlation coefficient of 0.58 (p < 0.001). The percent difference between measured and predicted brachial blood flow 40 days after surgery was less than 30% in 72% of patients investigated. Conclusions: The results indicate that the use of the AVF.SIM system allowed to predict with a good accuracy the blood flow volume achievable after VA maturation, for a given location and type of anastomosis. This information may help in AVF surgical planning, reducing the AVFs with too low or too high blood flow, thus improving AVF patency rate and clinical outcome of renal replacement therapy.Background: The number of patients treated with hemodialysis (HD) in Europe is more than half a million and this number increases annually. The arteriovenous fistula (AVF) is the vascular access (VA) of first choice, but the clinical outcome is still poor. A consistent number of AVFs fails to reach the desired blood flow rate for HD treatment, while some have too high flow and risk for cardiac complications. Despite the skill of the surgeons and the possibility to use Ultrasound investigation for mapping arm vasculature, it is still not possible to predict the blood flow volume that will be obtained after AVF maturation. Methods: We evaluated the potential of using a computational model (AVF.SIM) to predict the blood flow volume that will be achieved after AVF maturation, within a multicenter international clinical investigation aimed at assessing AVF.SIM predictive power. The study population included 231 patients, with data on AVF maturation in 124 patients, and on long-term primary patency in 180 patients. Results: At 1 year of follow-up, about 60% of AVFs were still patent, with comparable primary patency in proximal and distal anastomosis. The correlation between predicted and measured blood flow volume in the brachial artery at 40 days after surgery was statistically significant, with an overall correlation coefficient of 0.58 (p < 0.001). The percent difference between measured and predicted brachial blood flow 40 days after surgery was less than 30% in 72% of patients investigated. Conclusions: The results indicate that the use of the AVF.SIM system allowed to predict with a good accuracy the blood flow volume achievable after VA maturation, for a given location and type of anastomosis. This information may help in AVF surgical planning, reducing the AVFs with too low or too high blood flow, thus improving AVF patency rate and clinical outcome of renal replacement therapy.A

    Toward longitudinal studies of hemodynamically induced vessel wall remodeling

    No full text
    Introduction: Autogenous arteriovenous fistula is the preferred vascular access for hemodialysis, but it has high rates of non-maturation and early failure due to vascular stenosis. Convincing evidence supports a key role of local hemodynamics in vascular remodeling, suggesting that unsteady and disturbed flow conditions may be related to stenosis formation in arteriovenous fistula. The purpose of our study was to explore the feasibility of coupling contrast-free magnetic resonance imaging and computational fluid dynamics in longitudinal studies to identify the role of local hemodynamic changes over time in inducing vessel wall remodeling in arteriovenous fistula. Methods: We acquired contrast-free magnetic resonance imaging of arm vasculature at 1 week and 6 weeks after arteriovenous fistula creation in a 72-year-old patient. We then generated three-dimensional models and evaluated lumen cross-sectional area of arteriovenous fistula limbs. We performed high-resolution computational fluid dynamics to evaluate changes in local hemodynamics over time. Results: Our contrast-free magnetic resonance imaging protocol provided good quality images in a short scan duration. We observed a homogeneous dilatation in the proximal artery, while there was a more pronounced lumen dilatation in the venous outflow as compared to a limited dilatation in the juxta-anastomotic vein. Furthermore, we observed a slight stabilization of the flow pattern over time, suggesting that vascular outward remodeling accommodates the flow to a more helicoidally phenotype. Conclusion: Coupling contrast-free magnetic resonance imaging and high-resolution computational fluid dynamics represents a promising approach to shed more light in the mechanisms of vascular remodeling and can be used for prospective clinical investigations aimed at identifying critical hemodynamic factors contributing to arteriovenous fistula failure

    Supplementary_Material – Supplemental material for Toward longitudinal studies of hemodynamically induced vessel wall remodeling

    No full text
    <p>Supplemental material, Supplementary_Material for Toward longitudinal studies of hemodynamically induced vessel wall remodeling by Michela Bozzetto, Paolo Brambilla, Stefano Rota, Bogdan Ene-Iordache, Sandro Sironi, Giuseppe Remuzzi and Andrea Remuzzi in The International Journal of Artificial Organs</p

    Kidney volume measurement methods for clinical studies on autosomal dominant polycystic kidney disease

    No full text
    <div><p>Background</p><p>In autosomal dominant polycystic kidney disease (ADPKD), total kidney volume (TKV) is regarded as an important biomarker of disease progression and different methods are available to assess kidney volume. The purpose of this study was to identify the most efficient kidney volume computation method to be used in clinical studies evaluating the effectiveness of treatments on ADPKD progression.</p><p>Methods and findings</p><p>We measured single kidney volume (SKV) on two series of MR and CT images from clinical studies on ADPKD (experimental dataset) by two independent operators (expert and beginner), twice, using all of the available methods: polyline manual tracing (reference method), free-hand manual tracing, semi-automatic tracing, Stereology, Mid-slice and Ellipsoid method. Additionally, the expert operator also measured the kidney length. We compared different methods for reproducibility, accuracy, precision, and time required. In addition, we performed a validation study to evaluate the sensitivity of these methods to detect the between-treatment group difference in TKV change over one year, using MR images from a previous clinical study. Reproducibility was higher on CT than MR for all methods, being highest for manual and semiautomatic contouring methods (planimetry). On MR, planimetry showed highest accuracy and precision, while on CT accuracy and precision of both planimetry and Stereology methods were comparable. Mid-slice and Ellipsoid method, as well as kidney length were fast but provided only a rough estimate of kidney volume. The results of the validation study indicated that planimetry and Stereology allow using an importantly lower number of patients to detect changes in kidney volume induced by drug treatment as compared to other methods.</p><p>Conclusions</p><p>Planimetry should be preferred over fast and simplified methods for accurately monitoring ADPKD progression and assessing drug treatment effects. Expert operators, especially on MR images, are required for performing reliable estimation of kidney volume. The use of efficient TKV quantification methods considerably reduces the number of patients to enrol in clinical investigations, making them more feasible and significant.</p></div

    Agreement between kidney volume computation methods on CT in the experimental dataset.

    No full text
    <p>Panels A-E: Bland-Altman plots showing agreement different kidney volume computation methods (A: Osirix free-hand; B: Livewire tool; C: Stereology; D: Mid-slice method; E: Ellipsoid method) versus ImageJ polyline (reference method). Percent differences in single kidney volume (SKV) are plotted against average SKV values of the two methods. Solid lines denote mean difference, while dashed lines denote ± standard deviations. Panel F: plot of the residual of the linear regression of kidney length against SKV (assessed by reference ImageJ polyline method). Black dots represent right kidneys while white dots represent left kidneys.</p

    Total kidney volume changes compared with baseline at 1 year of treatment with placebo or Octreotide-LAR.

    No full text
    <p>Total kidney volume was assessed by different kidney volume computation methods on MR images taken from the ALADIN clinical study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0178488#pone.0178488.ref012" target="_blank">12</a>].</p

    Inter and intra-rater reproducibility of single kidney volume (SKV) measured by expert and beginner operators using different quantification methods on MR and CT images from ADPKD patients in the experimental dataset.

    No full text
    <p>Inter and intra-rater reproducibility of single kidney volume (SKV) measured by expert and beginner operators using different quantification methods on MR and CT images from ADPKD patients in the experimental dataset.</p
    corecore