14 research outputs found

    Antiproliferative Effect of Ascorbic Acid Is Associated with the Inhibition of Genes Necessary to Cell Cycle Progression

    Get PDF
    BACKGROUND: Ascorbic acid (AA), or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the capacity of AA, but not other antioxidants, to down-modulate cAMP intracellular concentration by a competitive inhibition of the adenylate cyclase enzymatic activity. Because of the critical role of cAMP in intracellular signalling, we decided to explore the possibility that ascorbic acid could modulate the expression of other genes. METHODS AND FINDINGS: Using human pangenomic microarrays, we found that AA inhibited the expression of two categories of genes necessary for cell cycle progression, tRNA synthetases and translation initiation factor subunits. In in vitro assays, we demonstrated that AA induced the S-phase arrest of proliferative normal and tumor cells. Highest concentrations of AA leaded to necrotic cell death. However, quiescent cells were not susceptible to AA toxicity, suggesting the blockage of protein synthesis was mainly detrimental in metabolically-active cells. Using animal models, we found that high concentrations of AA inhibited tumor progression in nude mice grafted with HT29 cells (derived from human colon carcinoma). Consistently, expression of tRNA synthetases and ieF2 appeared to be specifically decreased in tumors upon AA treatment. CONCLUSIONS: AA has an antiproliferative activity, at elevated concentration that could be obtained using IV injection. This activity has been observed in vitro as well in vivo and likely results from the inhibition of expression of genes involved in protein synthesis. Implications for a clinical use in anticancer therapies will be discussed

    Prominent and Persistent Extraneural Infection in Human PrP Transgenic Mice Infected with Variant CJD

    Get PDF
    Background. The evolution of the variant Creutzfeldt-Jakob disease (vCJD) epidemic is hazardous to predict due to uncertainty in ascertaining the prevalence of infection and because the disease might remain asymptomatic or produce an alternate, sporadic-like phenotype. Methodology/Principal Findings. Transgenic mice were produced that overexpress human prion protein with methionine at codon 129, the only allele found so far in vCJD-affected patients. These mice were infected with prions derived from variant and sporadic CJD (sCJD) cases by intracerebral or intraperitoneal route, and transmission efficiency and strain phenotype were analyzed in brain and spleen. We showed that i) the main features of vCJD infection in humans, including a prominent involvement of the lymphoid tissues compared to that in sCJD infection were faithfully reproduced in such mice; ii) transmission of vCJD agent by intracerebral route could lead to the propagation of either vCJD or sCJD-like prion in the brain, whereas vCJD prion was invariably propagated in the spleen, iii) after peripheral exposure, inefficient neuroinvasion was observed, resulting in an asymptomatic infection with life-long persistence of vCJD prion in the spleen at stable and elevated levels. Conclusion/Significance. Our findings emphasize the possibility that human-to-human transmission of vCJD might produce alternative neuropathogical phenotypes and that lymphoid tissue examination of CJD cases classified as sporadic might reveal an infection by vCJD-type prions. They also provide evidence for the strong propensity of this agent to establish long-lasting, subclinical vCJD infection of lymphoreticular tissues, thus amplifying the risk for iatrogenic transmission

    XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans.

    Get PDF
    Mutations in the XNP/ATR-X gene cause several X-linked mental retardation syndromes in humans. The XNP/ATR-X gene encodes a DNA-helicase belonging to the SNF2 family. It has been proposed that XNP/ATR-X might be involved in chromatin remodelling. The lack of a mouse model for the ATR-X syndrome has, however, hampered functional studies of XNP/ATR-X. C. elegans possesses one homolog of the XNP/ATR-X gene, named xnp-1. By analysing a deletion mutant, we show that xnp-1 is required for the development of the embryo and the somatic gonad. Moreover, we show that abrogation of xnp-1 function in combination with inactivation of genes of the NuRD complex, as well as lin-35/Rb and hpl-2/HP1 leads to a stereotyped block of larval development with a cessation of growth but not of cell division. We also demonstrate a specific function for xnp-1 together with lin-35 or hpl-2 in the control of transgene expression, a process known to be dependent on chromatin remodelling. This study thus demonstrates that in vivo XNP-1 acts in association with RB, HP1 and the NuRD complex during development

    CMTX1 patients' cells present genomic instability corrected by CamKII inhibitors

    No full text
    International audienceBackground: We previously described that fibroblasts from animal models of CMTX1 present genomic instability and poor connexon activity. In vivo, these transgenic mice present motor deficits. This phenotype could be significantly reverted by treatment with (CamKII) inhibitors. The objective of this study is to translate our findings to patients. Methods: We cultured fibroblasts from skin biopsies of CMTX1 patients and analyzed cells for genomic instabilty, connexon activity, and potential correction by CamKII inhibitors. Results: The phenotypic analysis of these cells confirmed strong similarities between the GJB1 transgenic mouse cell lines and CMTX1 patient fibroblast cell lines. Both present mitotic anomalies, centrosome overduplication, and connexon activity deficit. This phenotype is corrected by CamKII inhibitors. Conclusions: Our data demonstrate that fibroblasts from CMTX1 patients present a phenotype similar to transgenic lines that can be corrected by CamKII inhibitors. This presents a track to develop therapeutic strategies for CMTX1 treatment

    Erratum to: "CMTX1 patients' cells present genomic instability corrected by CamKII inhibitors"

    Get PDF
    Erratum to: "CMTX1 patients' cells present genomic instability corrected by CamKII inhibitors" http://prodinra.inra.fr/record/343266International audienc

    CamKII inhibitors reduce mitotic instability, connexon anomalies and progression of the <em>in vivo</em> behavioral phenotype in transgenic animals expressing a mutated Gjb1 gene

    Get PDF
    International audienceMutation in the Gjb1 gene, coding for a connexin (Cx32), is associated with an inherited peripheral neuropathic disorder(X-linked Charcot-Marie-Tooth, CMTX). Our previous work reported that transgenic animals expressing a human Gjb1 transgene present polyploidy and abnormal over-duplication of the centrosome, suggesting a role for Gjb1 in mitoticstability. In this article, we propose mechanisms by which mutations in Gjb1 induce mitotic instability and discuss its potential relation with the CMTX phenotype. We showed that transgenic cells exhibit CamKII over-stimulation, a phenomenon that has been linked to mitotic instability (polyploidy, nuclear volume and centrosome over-duplication), that is reversed by CamKII inhibitors. We also demonstrate that connex on activity is partially restored in transgenic cells with CamKII inhibitors. Our model supports the role for Pim 1, kinase that has been associated with genomicin stability in cancers, in genomic in stability in Cx32 mutations. Regarding in vivo phenotype, we showed that degradation on ther otarodtest in our transgenic mice is significantly lowered by treatment with a CamKII inhibitor (KN93). This effect was seen in two lines with different point mutations in GJB1, and stopping the treatment led to degradation of the phenotype
    corecore