279 research outputs found

    Retinoids Regulate Survival and Antigen Presentation by Immature Dendritic Cells

    Get PDF
    Maturation of dendritic cells (DCs) is a critical step for the induction of an immune response. We have examined the role of retinoid nuclear receptor pathways in this process. Retinoids induce DC apoptosis, in the absence of inflammatory signals, through retinoic acid receptor (RAR)α/retinoic X receptor (RXR) heterodimers. In contrast, via a cross talk with inflammatory cytokines, retinoids increase DNA binding activity of nuclear factor κB in DCs, trigger membrane major histocompatibility complex class II and costimulatory molecule expression, induce the differentiation of immature DCs into mature DCs, and enhance antigen-specific T cell response. This maturation of DCs is mediated via a RXR-dependent/RAR-independent pathway and via an RARα/RXR pathway distinct from the one responsible for apoptosis. Apoptosis and activation, mediated through distinct nuclear retinoid receptor pathways, can be dissociated from each other with selective synthetic retinoids. We identify a novel cellular function for retinoids and suggest that selective retinoids might be of interest for controlling antigen presentation

    Identification of an IL-17–producing NK1.1neg iNKT cell population involved in airway neutrophilia

    Get PDF
    Invariant natural killer T (iNKT) cells are an important source of both T helper type 1 (Th1) and Th2 cytokines, through which they can exert beneficial, as well as deleterious, effects in a variety of inflammatory diseases. This functional heterogeneity raises the question of how far phenotypically distinct subpopulations are responsible for such contrasting activities. In this study, we identify a particular set of iNKT cells that lack the NK1.1 marker (NK1.1neg) and secrete high amounts of interleukin (IL)-17 and low levels of interferon (IFN)-γ and IL-4. NK1.1neg iNKT cells produce IL-17 upon synthetic (α-galactosylceramide [α-GalCer] or PBS-57), as well as natural (lipopolysaccharides or glycolipids derived from Sphingomonas wittichii and Borrelia burgdorferi), ligand stimulation. NK1.1neg iNKT cells are more frequent in the lung, which is consistent with a role in the natural immunity to inhaled antigens. Indeed, airway neutrophilia induced by α-GalCer or lipopolysaccharide instillation was significantly reduced in iNKT-cell–deficient Jα18−/− mice, which produced significantly less IL-17 in their bronchoalveolar lavage fluid than wild-type controls. Furthermore, airway neutrophilia was abolished by a single treatment with neutralizing monoclonal antibody against IL-17 before α-GalCer administration. Collectively, our findings reveal that NK1.1neg iNKT lymphocytes represent a new population of IL-17–producing cells that can contribute to neutrophil recruitment through preferential IL-17 secretion

    Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria

    Get PDF
    FcεR1-expressing neutrophils accumulate in the brain of mice infected with Plasmodium berghei (PbANKA) and promote the development of experimental cerebral malaria

    Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide

    Get PDF
    Nanoscale devices in which the interaction with light can be configured using external control signals hold great interest for next-generation optoelectronic circuits. Materials exhibiting a structural or electronic phase transition offer a large modulation contrast with multi-level optical switching and memory functionalities. In addition, plasmonic nanoantennas can provide an efficient enhancement mechanism for both the optically induced excitation and the readout of materials strategically positioned in their local environment. Here, we demonstrate picosecond all-optical switching of the local phase transition in plasmonic antenna-vanadium dioxide (VO2) hybrids, exploiting strong resonant field enhancement and selective optical pumping in plasmonic hotspots. Polarization- and wavelength-dependent pump-probe spectroscopy of multifrequency crossed antenna arrays shows that nanoscale optical switching in plasmonic hotspots does not affect neighboring antennas placed within 100 nm of the excited antennas. The antenna-assisted pumping mechanism is confirmed by numerical model calculations of the resonant, antenna-mediated local heating on a picosecond time scale. The hybrid, nanoscale excitation mechanism results in 20 times reduced switching energies and 5 times faster recovery times than a VO2 film without antennas, enabling fully reversible switching at over two million cycles per second and at local switching energies in the picojoule range. The hybrid solution of antennas and VO2 provides a conceptual framework to merge the field localization and phase-transition response, enabling precise, nanoscale optical memory functionalities

    H4 Histamine Receptors Mediate Cell Cycle Arrest in Growth Factor-Induced Murine and Human Hematopoietic Progenitor Cells

    Get PDF
    The most recently characterized H4 histamine receptor (H4R) is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs

    SUMO-1 possesses DNA binding activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conjugation of small ubiquitin-related modifiers (SUMOs) is a frequent post-translational modification of proteins. SUMOs can also temporally associate with protein-targets via SUMO binding motifs (SBMs). Protein sumoylation has been identified as an important regulatory mechanism especially in the regulation of transcription and the maintenance of genome stability. The precise molecular mechanisms by which SUMO conjugation and association act are, however, not understood.</p> <p>Findings</p> <p>Using NMR spectroscopy and protein-DNA cross-linking experiments, we demonstrate here that SUMO-1 can specifically interact with dsDNA in a sequence-independent fashion. We also show that SUMO-1 binding to DNA can compete with other protein-DNA interactions at the example of the regulatory domain of Thymine-DNA Glycosylase and, based on these competition studies, estimate the DNA binding constant of SUMO1 in the range 1 mM.</p> <p>Conclusion</p> <p>This finding provides an important insight into how SUMO-1 might exert its activity. SUMO-1 might play a general role in destabilizing DNA bound protein complexes thereby operating in a bottle-opener way of fashion, explaining its pivotal role in regulating the activity of many central transcription and DNA repair complexes.</p

    Complications associated with transobturator sling procedures: analysis of 233 consecutive cases with a 27 months follow-up

    Get PDF
    <p>Abstract</p> <p>Backround</p> <p>The transobturator tape procedure (TOT) is an effective surgical treatment of female stress urinary incontinence. However data concerning safety are rare, follow-up is often less than two years, and complications are probably underreported. The aim of this study was to describe early and late complications associated with TOT procedures and identify risk factors for erosions.</p> <p>Methods</p> <p>It was a 27 months follow-up of a cohort of 233 women who underwent TOT with three different types of slings (Aris<sup>®</sup>, Obtape<sup>®</sup>, TVT-O<sup>®</sup>). Follow-up information was available for 225 (96.6%) women.</p> <p>Results</p> <p>There were few per operative complications. Forty-eight women (21.3%) reported late complications including <it>de novo </it>or worsening of preexisting urgencies (10.2%), perineal pain (2.2%), <it>de novo </it>dyspareunia (9%), and vaginal erosion (7.6%). The risk of erosion significantly differed between the three types of slings and was 4%, 17% and 0% for Aris<sup>®</sup>, Obtape<sup>® </sup>and TVT-O<sup>® </sup>respectively (P = 0.001). The overall proportion of women satisfied by the procedure was 72.1%. The percentage of women satisfied was significantly lower in women who experienced erosion (29.4%) compared to women who did not (78.4%) (RR 0.14, 95% CI 0.05-0.38, P < 0.001).</p> <p>Conclusion</p> <p>Late post operative complications are relatively frequent after TOT and can impair patient's satisfaction. Women should be informed of these potential complications preoperatively and require careful follow-up after the procedure. Choice of the safest sling material is crucial as it is a risk factor for erosion.</p
    • …
    corecore