29,162 research outputs found

    Metallicity of high stellar mass galaxies with signs of merger events

    Get PDF
    We focus on an analysis of galaxies of high stellar mass and low metallicity. We cross-correlated the Millenium Galaxy Catalogue (MGC) and the Sloan Digital Sky Survey (SDSS) galaxy catalogue to provide a sample of MGC objects with high resolution imaging and both spectroscopic and photometric information available in the SDSS database. For each galaxy in our sample, we conducted a systematic morphological analysis by visual inspection of MGC images using their luminosity contours. The galaxies are classified as either disturbed or undisturbed objects. We divide the sample into three metallicity regions, within wich we compare the properties of disturbed and undisturbed objects. We find that the fraction of galaxies that are strongly disturbed, indicative of being merger remnants, is higher when lower metallicity objects are considered. The three bins analysed consist of approximatively 15%, 20%, and 50% disturbed galaxies (for high, medium, and low metallicity, respectively). Moreover, the ratio of the disturbed to undisturbed relative distributions of the population age indicator, Dn(4000), in the low metallicity bin, indicates that the disturbed objects have substantially younger stellar populations than their undisturbed counterparts. In addition, we find that an analysis of colour distributions provides similar results, showing that low metallicity galaxies with a disturbed morphology are bluer than those that are undisturbed. The bluer colours and younger populations of the low metallicity, morphologically disturbed objects suggest that they have experienced a recent merger with an associated enhanced star formation rate. [abridged]Comment: Astronomy & Astrophysics, in pres

    Impact of an AGN featureless continuum on estimation of stellar population properties

    Full text link
    The effect of the featureless power-law (PL) continuum of an active galactic nucleus (AGN) on the estimation of physical properties of galaxies with optical population spectral synthesis (PSS) remains largely unknown. With this in mind, we fit synthetic galaxy spectra representing a wide range of galaxy star formation histories (SFHs) and including distinct PL contributions of the form FνναF_{\nu} \propto \nu^{-\alpha} with the PSS code STARLIGHT to study to which extent various inferred quantities (e.g. stellar mass, mean age, and mean metallicity) match the input. The synthetic spectral energy distributions (SEDs) computed with our evolutionary spectral synthesis code include an AGN PL component with 0.5α20.5 \leq \alpha \leq 2 and a fractional contribution 0.2xAGN0.80.2 \leq x_{\mathrm{AGN}} \leq 0.8 to the monochromatic flux at 4020 \AA. At the empirical AGN detection threshold xAGN0.26x_{\mathrm{AGN}}\simeq 0.26 that we previously inferred in a pilot study on this subject, our results show that the neglect of a PL component in spectral fitting can lead to an overestimation by \sim2 dex in stellar mass and by up to \sim1 and \sim4 dex in the light- and mass-weighted mean stellar age, respectively, whereas the light- and mass-weighted mean stellar metallicity are underestimated by up to \sim0.3 and \sim0.6 dex, respectively. Other fitting set-ups including either a single PL or multiple PLs in the base reveal, on average, much lower unsystematic uncertainties of the order of those typically found when fitting purely stellar SEDs with stellar templates, however, reaching locally up to \sim1, 3 and 0.4 dex in mass, age and metallicity, respectively. Our results underscore the importance of an accurate modelling of the AGN spectral contribution in PSS fits as a minimum requirement for the recovery of the physical and evolutionary properties of stellar populations in active galaxies.Comment: 18 pages, 22 figures, accepted for publication in A&

    Structure and decays of nuclear three-body systems: the Gamow coupled-channel method in Jacobi coordinates

    Full text link
    Background:{\bf Background:} Weakly bound and unbound nuclear states appearing around particle thresholds are prototypical open quantum systems. Theories of such states must take into account configuration mixing effects in the presence of strong coupling to the particle continuum space. Purpose:{\bf Purpose:} To describe structure and decays of three-body systems, we developed a Gamow coupled-channel (GCC) approach in Jacobi coordinates by employing the complex-momentum formalism. We benchmarked the new framework against the complex-energy Gamow Shell Model (GSM). Methods:{\bf Methods:} The GCC formalism is expressed in Jacobi coordinates, so that the center-of-mass motion is automatically eliminated. To solve the coupled-channel equations, we use hyperspherical harmonics to describe the angular wave functions while the radial wave functions are expanded in the Berggren ensemble, which includes bound, scattering and Gamow states. Results:{\bf Results:} We show that the GCC method is both accurate and robust. Its results for energies, decay widths, and nucleon-nucleon angular correlations are in good agreement with the GSM results. Conclusions:{\bf Conclusions:} We have demonstrated that a three-body GSM formalism explicitly constructed in cluster-orbital shell model coordinates provides similar results to a GCC framework expressed in Jacobi coordinates, provided that a large configuration space is employed. Our calculations for A=6A=6 systems and 26^{26}O show that nucleon-nucleon angular correlations are sensitive to the valence-neutron interaction. The new GCC technique has many attractive features when applied to bound and unbound states of three-body systems: it is precise, efficient, and can be extended by introducing a microscopic model of the core.Comment: 10 pages, 8 figure

    Multi-site observations of Delta Scuti stars 7 Aql and 8 Aql (a new Delta Scuti variable): The twelfth STEPHI campaign in 2003

    Full text link
    We present an analysis of the pulsation behaviour of the Delta Scuti stars 7 Aql (HD 174532) and 8 Aql (HD 174589) -- a new variable star -- observed in the framework of STEPHI XII campaign during 2003 June--July. 183 hours of high precision photometry were acquired by using four-channel photometers at three sites on three continents during 21 days. The light curves and amplitude spectra were obtained following a classical scheme of multi-channel photometry. Observations in different filters were also obtained and analyzed. Six and three frequencies have been unambiguously detected above a 99% confidence level in the range 0.090 mHz--0.300 mHz and 0.100 mHz-- 0.145 mHz in 7 Aql and 8 Aql respectively. A comparison of observed and theoretical frequencies shows that 7 Aql and 8 Aql may oscillate with p modes of low radial orders, typical among Delta Scuti stars. In terms of radial oscillations the range of 8 Aql goes from n=1 to n=3 while for 7 Aql the range spans from n=4 to n=7. Non-radial oscillations have to be present in both stars as well. The expected range of excited modes according to a non adiabatic analysis goes from n=1 to n=6 in both stars.Comment: 8 pages, 7 fugures, 5 tables, accepted for publication in Astronomical Journa

    Roles of proton-neutron interactions in alpha-like four-nucleon correlations

    Get PDF
    An extended pairing plus QQ force model, which has been shown to successfully explain the nuclear binding energy and related quantities such as the symmetry energy, is applied to study the alpha-like four-nucleon correlations in 1f_{7/2} shell nuclei. The double difference of binding energies, which displays a characteristic behavior at NZN \approx Z, is interpreted in terms of the alpha-like correlations. Important roles of proton-neutron interactions forming the alpha-like correlated structure are discussed.Comment: 10 pages, 2 figures, RevTex, submitted to Phys. Rev.

    The measurement errors in the Swift-UVOT and XMM-OM

    Full text link
    The probability of photon measurement in some photon counting instrumentation, such as the Optical Monitor on the XMM-Newton satellite, and the UVOT on the Swift satellite, does not follow a Poisson distribution due to the detector characteristics, but a Binomial distribution. For a single-pixel approximation, an expression was derived for the incident countrate as a function of the measured count rate by Fordham, Moorhead and Galbraith (2000). We show that the measured countrate error is binomial, and extend their formalism to derive the error in the incident count rate. The error on the incident count rate at large count rates is larger than the Poisson-error of the incident count rate.Comment: 4 pages, 2 postscript figures, submitted to MNRA

    The radiating part of circular sources

    Get PDF
    An analysis is developed linking the form of the sound field from a circular source to the radial structure of the source, without recourse to far-field or other approximations. It is found that the information radiated into the field is limited, with the limit fixed by the wavenumber of source multiplied by the source radius (Helmholtz number). The acoustic field is found in terms of the elementary fields generated by a set of line sources whose form is given by Chebyshev polynomials of the second kind, and whose amplitude is found to be given by weighted integrals of the radial source term. The analysis is developed for tonal sources, such as rotors, and, for Helmholtz number less than two, for random disk sources. In this case, the analysis yields the cross-spectrum between two points in the acoustic field. The analysis is applied to the problems of tonal radiation, random source radiation as a model problem for jet noise, and to noise cancellation, as in active control of noise from rotors. It is found that the approach gives an accurate model for the radiation problem and explicitly identifies those parts of a source which radiate.Comment: Submitted to Journal of the Acoustical Society of Americ
    corecore