76 research outputs found

    Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor α-APA R 95845 at 2.8 å resolution

    Get PDF
    AbstractBackground: HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that copies the RNA genome of HIV-1 into DNA. It is a heterodimer composed of a 66 kDa (p66) and a 51 kDa (p51) subunit. HIV-1 RT is a crucial target for structure-based drug design, and potent inhibitors have been identified, whose efficacy, however, is limited by drug resistance.Results The crystal structure of HIV-1 RT in complex with the non-nucleoside inhibitor α-anilinophenylacetamide (α-APA) R 95845 has been determined at 2.8 å resolution. The inhibitor binds in a hydrophobic pocket near the polymerase active site. The pocket contains five aromatic amino acid residues and the interactions of the side chains of these residues with the aromatic rings of non-nucleoside inhibitors appear to be important for inhibitor binding. Most of the amino acid residues where mutations have been correlated with high levels of resistance to non-nucleoside inhibitors of HIV-1 RT are located close to α-APA. The overall fold of HIV-1 RT in complex with α-APA is similar to that found when in complex with nevirapine, another non-nucleoside inhibitor, but there are significant conformational changes relative to an HIV-1 RT/DNA/Fab complex.Conclusion The non-nucleoside inhibitor-binding pocket has a flexible structure whose mobility may be required for effective polymerization, and may be part of a hinge that permits relative movements of two subdomains of the p66 subunit denoted the ‘palm’ and ‘thumb’. An understanding of the structure of the inhibitor-binding pocket, of the interactions between HIV-1 RT and α-APA, and of the locations of mutations that confer resistance to inhibitors provides a basis for structure-based design of chemotherapeutic agents for the treatment of AIDS

    The Biological Basis of and Strategies for Clinical Xenotransplantation

    Get PDF

    Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    Get PDF
    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient

    Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    Get PDF
    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient

    Preliminary results on HPD ionization measurements at CERN

    No full text

    Observation of the pion production by a λ\lambda hyperon

    No full text

    Shadow elastic seattering in the multi-Regge-exchange model

    No full text

    Observation of the pion production by a Λ hyperon

    No full text
    corecore