52 research outputs found

    PHorecasting Heritable Pulmonary Arterial Hypertension: Are We Nearly There Yet?

    Get PDF

    DNA Damage and Repair in Pulmonary Arterial Hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a complex multifactorial disease with both genetic and environmental dynamics contributing to disease progression. Over the last decade, several studies have demonstrated the presence of genomic instability and increased levels of DNA damage in PAH lung vascular cells, which contribute to their pathogenic apoptosis-resistant and proliferating characteristics. In addition, the dysregulated DNA damage response pathways have been indicated as causal factors for the presence of persistent DNA damage. To understand the significant implications of DNA damage and repair in PAH pathogenesis, the current review summarizes the recent advances made in this field. This includes an overview of the observed DNA damage in the nuclear and mitochondrial genome of PAH patients. Next, the irregularities observed in various DNA damage response pathways and their role in accumulating DNA damage, escaping apoptosis, and proliferation under a DNA damaging environment are discussed. Although the current literature establishes the pertinence of DNA damage in PAH, additional studies are required to understand the temporal sequence of the above-mentioned events. Further, an exploration of different types of DNA damage in conjunction with associated impaired DNA damage response in PAH will potentially stimulate early diagnosis of the disease and development of novel therapeutic strategies

    Toward accurate high-throughput SNP genotyping in the presence of inherited copy number variation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent discovery of widespread copy number variation in humans has forced a shift away from the assumption of two copies per locus per cell throughout the autosomal genome. In particular, a SNP site can no longer always be accurately assigned one of three genotypes in an individual. In the presence of copy number variability, the individual may theoretically harbor any number of copies of each of the two SNP alleles.</p> <p>Results</p> <p>To address this issue, we have developed a method to infer a "generalized genotype" from raw SNP microarray data. Here we apply our approach to data from 48 individuals and uncover thousands of aberrant SNPs, most in regions that were previously unreported as copy number variants. We show that our allele-specific copy numbers follow Mendelian inheritance patterns that would be obscured in the absence of SNP allele information. The interplay between duplication and point mutation in our data shed light on the relative frequencies of these events in human history, showing that at least some of the duplication events were recurrent.</p> <p>Conclusion</p> <p>This new multi-allelic view of SNPs has a complicated role in disease association studies, and further work will be necessary in order to accurately assess its importance. Software to perform generalized genotyping from SNP array data is freely available online <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>.</p

    The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations.

    Get PDF
    Pulmonary arterial hypertension (PAH) is characterized by dysregulated pulmonary artery endothelial cell (PAEC) proliferation, apoptosis and permeability. Loss-of-function mutations in the bone morphogenetic protein receptor type-II (BMPR-II) are the most common cause of heritable PAH, usually resulting in haploinsufficiency. We previously showed that BMPR-II expression is regulated via a lysosomal degradative pathway. Here, we show that the antimalarial drug, chloroquine, markedly increased cell surface expression of BMPR-II protein independent of transcription in PAECs. Inhibition of protein synthesis experiments revealed a rapid turnover of cell surface BMPR-II, which was inhibited by chloroquine treatment. Chloroquine enhanced PAEC expression of BMPR-II following siRNA knockdown of the BMPR-II transcript. Using blood outgrowth endothelial cells (BOECs), we confirmed that signalling in response to the endothelial BMPR-II ligand, BMP9, is compromised in BOECs from patients harbouring BMPR-II mutations, and in BMPR-II mutant PAECs. Chloroquine significantly increased gene expression of BMP9-BMPR-II signalling targets Id1, miR21 and miR27a in both mutant BMPR-II PAECs and BOECs. These findings provide support for the restoration of cell surface BMPR-II with agents such as chloroquine as a potential therapeutic approach for heritable PAH

    Genetics and genomics of pulmonary arterial hypertension.

    Get PDF
    Since 2000 there have been major advances in our understanding of the genetic and genomics of pulmonary arterial hypertension (PAH), although there remains much to discover. Based on existing knowledge, around 25-30% of patients diagnosed with idiopathic PAH have an underlying Mendelian genetic cause for their condition and should be classified as heritable PAH (HPAH). Here, we summarise the known genetic and genomic drivers of PAH, the insights these provide into pathobiology, and the opportunities afforded for development of novel therapeutic approaches. In addition, factors determining the incomplete penetrance observed in HPAH are discussed. The currently available approaches to genetic testing and counselling, and the impact of a genetic diagnosis on clinical management of the patient with PAH, are presented. Advances in DNA sequencing technology are rapidly expanding our ability to undertake genomic studies at scale in large cohorts. In the future, such studies will provide a more complete picture of the genetic contribution to PAH and, potentially, a molecular classification of this disease

    Functional filter for whole genome sequencing data identifies HHT and stress-associated non-coding SMAD4 polyadenylation site variants >5kb from coding DN

    Get PDF
    Acknowledgments: This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The work was cofounded by the National Institute for Health Research Imperial Biomedical Research Centre, the D’Almeida Charitable Trust, and Imperial College Healthcare NHS Trust. AA was supported by Prince Sultan Military Medical City, Saudi Arabia. MAA was supported by the National Institutes of Health (grant R35HL140019). The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100,000 Genomes Project uses data provided by patients and collected by the National Health Service as part of their care and support. We thank the National Health Service staff of the UK Genomic Medicine Centres and the participants for their willing participation; the Genomics England Clinical Research Interface team, specifically Susan Walker, for separately reviewing bam file variant sequences; Charlotte Bevan, Michael Hubank and Santiago Vernia for helpful discussions and manuscript review; and our academic and public partners within the NIHR Imperial BRC’s Social Genetic and Environmental Determinants of Health (SGE) theme. We specifically thank the presented families for confirmation of their clinical phenotypes and consent to share in this manuscript. The views expressed are those of the authors and not necessarily those of funders, the NHS, the NIHR, or the Department of Health and Social Care.Peer reviewedPublisher PD

    Integrative Multiomics to Dissect the Lung Transcriptional Landscape of Pulmonary Arterial Hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH

    Genetic counselling and testing in pulmonary arterial hypertension:a consensus statement on behalf of the International Consortium for Genetic Studies in PAH

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.</p
    • 

    corecore