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 41 

Abstract 42 

Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite 43 

currently available therapies. Multiomics systems biology analysis can shed new light on PAH 44 

pathobiology and inform translational research efforts. Using RNA sequencing on the largest 45 

PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression 46 
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network modules associated with PAH and potential therapeutic targets. Co-expression network 47 

analysis was performed to identify modules of co-expressed genes which were then assessed for 48 

and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration 49 

with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung 50 

Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic 51 

profiles. We identified a co-expression module of 266 genes, called the pink module, which may 52 

be a response to the underlying disease process to counteract disease progression in PAH. This 53 

module was associated not only with PAH severity such as increased PVR and intimal thickness, 54 

but also with compensated PAH such as lower number of hospitalizations, WHO functional class 55 

and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-56 

associated genetic variation in multiple cohorts. Regulatory network analysis revealed that 57 

BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. 58 

Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the 59 

pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type 60 

deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. 61 

myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases 62 

(USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics 63 

integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, 64 

genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are 65 

warranted to investigate the role and therapeutic potential of the pink module and targeting USPs 66 

in PAH. 67 

 68 

 69 
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Introduction 70 

Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease 71 

characterized by irreversible vascular remodeling. Despite the identification of many candidate 72 

drugs in the preclinical stage, effective therapies that reverse the underlying disease process are 73 

still lacking. A deeper understanding of the molecular and cellular mechanisms in PAH lung 74 

tissue is needed to bridge this translational gap. 75 

 76 

Data-driven transcriptome-wide studies of PAH lungs have uncovered genes and pathways 77 

differentially expressed in PAH(1, 2). However, whether such findings are robust, causal, and 78 

cell-specific in disease pathogenesis remain unknown since lung samples are usually from 79 

limited numbers of advanced stage PAH patients at the bulk tissue level. Furthermore, typical 80 

gene-level differential expression analysis may not reveal upstream causal and regulatory genes 81 

and pathways(3, 4). A rigorous systems-level examination of altered transcriptomes in PAH 82 

lungs integrating different omics data types is needed to advance our understanding of PAH 83 

pathobiology and help inform potential causal genes, regulatory networks and pathways, and 84 

therapeutic targets to facilitate translational efforts. 85 

 86 

In this study which leverages the transcriptional landscape of a large biorepository of PAH lungs 87 

(96 disease vs 52 control), we dissect the gene networks of PAH lungs using an integrative 88 

multiomic and systems biology approach to uncover a module of co-expressed genes associated 89 

with clinicopathologic severity, genetic risk, and vascular cell specificity in PAH, and further 90 

identify novel therapeutic targets by a pharmacotranscriptomic screen for future preclinical 91 

studies. 92 
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 93 

Methods  94 

RNA sequencing and differential expression analysis 95 

Patient enrollment and the standardized tissue-processing protocol for PHBI have been 96 

previously described(1, 5). Paired-end 75 base-pair RNA sequencing (RNA-seq) was performed 97 

on all available PHBI lung samples using an Illumina sequencer. Samples were sequenced in two 98 

batches. Sequencing depth was 20-25 million reads per sample in one batch and 15-20 million 99 

reads per sample in the other batch. Reads were mapped to the UCSC human reference genome 100 

(version hg19) using STAR(6). Transcripts were assembled and quantified using StringTie(7). 101 

Transcript-level abundance estimates were imported and summarized into a counts matrix using 102 

tximport(8) which was then input into DESeq2 (9) for differential gene expression analysis using 103 

a negative binomial generalized linear model. Potential outliers and batch effects of different 104 

covariates (i.e. sequencing batch, sex, age, ethnicity) were assessed by hierarchical clustering 105 

and principal component analysis. Two patients with WHO Group IV pulmonary hypertension 106 

were excluded from this analysis. Sequencing batch was adjusted for in the DESeq2 model. Sex-107 

stratified differential expression analysis was also performed. Differentially expressed genes 108 

with FDR < 0.05 were considered statistically significant. 109 

 110 

Weighted Gene Co-Expression Network Analysis (WGCNA) 111 

WGCNA v. 1.69 R package was used to identify modules of co-expressed genes in PHBI lung 112 

RNA-seq samples. We first performed variance stabilizing transformation of the counts matrix 113 

using DESeq2. We then adjusted for the effect of the two sequencing batches using an empirical 114 

Bayes framework through the ComBat function of the sva v. 3.34 R package. The batch-115 
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corrected expression matrix was then evaluated for potential outlier samples by hierarchal 116 

clustering. Two samples were identified as outliers and were removed from downstream 117 

analyses: a 55 year-old female control and a 14 year-old male patient with idiopathic PAH. The 118 

bottom 25% of genes with the least variation across samples were filtered out. Known PAH 119 

genes that were filtered out at this step were added back to the expression matrix (48 out of 582 120 

PAH genes retrieved from disease-gene databases DisGeNET (10) and Comparative 121 

Toxicogenomics Database (11) using the Harmonizome portal (12)). A total of 17,564 genes 122 

were then included in downstream WGCNA steps. A soft-thresholding power of 3 was selected 123 

to power the correlation of genes with the assumption that raising the correlation to a specific 124 

power will reduce the noise of the correlations in the adjacency matrix. A soft-thresholding 125 

power of 3 was selected to optimize both the scale-free topology index (R2 > 0.8) and mean 126 

connectivity (k = 205). To minimize effects of noise and spurious associations, the adjacency 127 

matrix was transformed into a Topological Overlap Matrix (TOM), and the corresponding 128 

dissimilarity matrix was calculated. Hierarchical clustering was then performed on the 129 

dissimilarity matrix after which genes were split into 25 modules using the cutreeDynamic 130 

function of the dynamicTreeCut R package using the following parameters: DeepSplit = 2, 131 

pamRespectsDendro = FALSE, cutHeight = 0.99, minClusterSize = 30. Module eigengenes 132 

representing the first principal component of a given module in a given single dataset (i.e. PHBI 133 

lung dataset) were calculated using the moduleEigengenes function of WGCNA. Given that 134 

dynamicTreeCut may identify modules whose expression profiles are similar in which their 135 

genes are highly co-expressed, such modules were assessed for and merged using the following 136 

step per the WGCNA analysis pipeline: hierarchical clustering was performed on the 137 

dissimilarity of module eigengenes after which similar modules were merged using the 138 
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mergeCloseModules function of WGCNA using a cutHeight of 0.15. Merging of similar 139 

modules yielded 20 final modules which were the used for downstream analyses. The strongest 140 

pairwise gene-gene connection (ANTXR1 and SFRP4) within the pink module was identified by 141 

comparing TOM values across all 33,732 pairs of pink genes. 142 

 143 

Pathway enrichment analysis 144 

Gene set enrichment analysis (GSEA) using R package fgsea v1.18.0 was performed to identify 145 

enriched pathways in the PAH lung signature. The PAH signature represents the differential 146 

transcriptome between PAH and control. Genes were ordered by the Wald statistic as determined 147 

by DESeq2 of PAH vs. control. Per the GSEA algorithm, genes were not filtered (i.e. by 148 

expression, variance, or by a statistical threshold for differential expression) prior to GSEA. The 149 

PAH signature was tested for enrichment in Hallmark pathways from Molecular Signature 150 

Database (13), as well as in co-expression modules. Sex-stratified analysis was performed using 151 

the sex-stratified differential expression analysis results. GSEA was also performed on select co-152 

expression module signatures (i.e. pink, royalblue, greenyellow). Module signatures were 153 

defined as the correlation of the module eigengene with the expression of genes across the 154 

transcriptome. Similar to the PAH signature analysis, genes were not filtered prior to GSEA. 155 

Module signatures were tested for enrichment in Biological Processes from Gene Ontology (GO) 156 

(14), Hallmark pathways from Molecular Signature Database (13), and/or known cell-type 157 

signatures from Azimuth(15). Enrichment in pathways with FDR < 0.05 were considered 158 

statistically significant. 159 

 160 

Module-trait correlation analysis 161 
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Pearson correlations of module eigengenes with clinical and pathologic characteristics were 162 

computed in order to prioritize modules by importance in PAH. Dichotomous categorical 163 

variables were coded 0 and 1. WHO functional class was obtained from the New York Heart 164 

Association (NYHA) class recorded immediately pre-transplant (i.e. day of transplant) and was 165 

coded as integers 1, 2, 3 and 4. If the immediate pre-transplant NYHA class was unavailable for 166 

a given patient, then the WHO functional class from their most recent clinic visit was used. 167 

Number of hospitalizations due to PAH were counted between the time of diagnostic RHC and 168 

lung transplantation. Presence of right heart failure signs such as ascites or leg swelling were 169 

recorded at the time of enrollment in the study (i.e. just prior to lung transplantation). Lab values 170 

(i.e. NT-proBNP and creatinine) were obtained from the most recent blood draw prior to 171 

transplant. The most recent pulmonary function testing and right heart catheterization results 172 

prior to transplant were used. Intima and intima plus media thickness were measured by a lung 173 

pathologist on explant histological tissue sections by morphometric analysis of volume density of 174 

pulmonary arteries. REVEAL lite scores were calculated as per Benza et al(16) using values of 175 

NT-proBNP or BNP, six-minute walk distance, WHO functional class, systolic blood pressure, 176 

heart rate, and creatinine. Values were obtained from the most recent available assessment prior 177 

to transplant. A score of zero was assigned for missing individual assessments as per Benza et 178 

al(16). P values < 0.05 were considered statistically significant. To minimize type II error and 179 

potential false negative results, results were interpreted using nominal P values given that our 180 

module-trait correlation analysis was intended to be exploratory and hypothesis-generating rather 181 

than to confirm an a prior hypothesis about module-trait correlations. Results will need to be 182 

confirmed in future targeted studies. Multiple testing correction (n=260 comparisons from 13 183 
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traits and 20 modules) was also performed and correlations with FDR < 0.05 are shown in a 184 

supplemental figure.  185 

 186 

Genome-wide association study (GWAS) enrichment analysis 187 

Enrichment of modules for PAH GWAS single-nucleotide polymorphisms (SNPs) were assessed 188 

using two distinct computational methods, MAGMA(17) and GSA-SNP2(18), across four 189 

independent PAH GWAS cohorts totaling 11,744 individuals(19, 20): the US PAH Biobank 190 

(PAHB), French Pulmonary Hypertension Allele-Associated Risk (PHAAR), British Heart 191 

Foundation Pulmonary Arterial Hypertension (BHFPAH), and UK National Institute for Health 192 

Research BioResource (NIHRBR) cohorts. SNPs were mapped to genes by chromosomal 193 

proximity (within 20 kilobases from the 5’ or 3’ ends of a gene) and genes were scored for 194 

association with PAH based on disease-SNP P-value associations from GWAS summary 195 

statistics. SNPs were not filtered (i.e. by a specified statistical threshold) prior to input into 196 

MAGMA and GSA-SNP2. Gene scores were then used in competitive gene-set analyses to 197 

identify module enrichment for PAH common genetic variation. To aggregate genetic variants 198 

into a gene score, the mean c2 statistic and the log-minimum GWAS P value for all SNPs 199 

localizing to a gene were used as per MAGMA(17) and GSA-SNP2(18), respectively. To 200 

determine significance, MAGMA uses a linear mixed model whereas GSA-SNP2 uses a standard 201 

normal distribution. Both methods adjust for gene size and gene density (the number of SNPs 202 

assigned to a given gene). The default statistical results were reported for MAGMA (P value) 203 

and GSA-SNP2 (false discovery rate). MAGMA P values were not corrected post-hoc for 204 

multiple testing given that this analysis was intended to be exploratory and hypothesis-generating 205 
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rather than to confirm an a prior hypothesis about GWAS enrichment. Results will need to be 206 

confirmed in future targeted studies. 207 

 208 

Bayesian gene regulatory network analysis 209 

In a complementary approach to co-expression analysis to infer co-regulation, we employed 210 

Bayesian network (BN) analysis to build a gene regulatory network. Specifically, BNs were 211 

constructed using Reconstructing Integrative Molecular Bayesian Network (RIMBANet)(21). 212 

For this method, 1000 networks were generated from different random seed genes using 213 

continuous and discrete expression data derived from transcriptomes from either GSE23546 (n = 214 

1343) (22), PHBI (n = 146), or GTEx v8 (n = 577) (23). Whole lung-specific cis eQTLs from 215 

GTEx v8 (23) and transcription factor-target gene data from HTRI (24), TRRUST (25), and 216 

PAZAR (26) databases were used as priors. Then, the final network for each of the 3 datasets 217 

was obtained by taking a consensus network from the 1000 randomly generated networks 218 

whereby only edges that passed a probability of >30% across the 1000 BNs were kept. Finally, 219 

the union of the 3 networks was taken to create a combined gene regulatory network derived 220 

from a total of 2,066 human lungs. The network was visualized in Cytoscape(27) where nodes 221 

represent genes and edges represent inferred directional gene-gene regulation. Node positions 222 

were determined by a prefuse force-directed algorithm. Genes from co-expression modules were 223 

projected onto this regulatory network with different color nodes representing module 224 

membership. Known PAH genes from disease-gene databases (Comparative Toxicogenomics 225 

Database(11) and DisGeNET(10)) were also projected onto the network. Local hub genes of a 226 

particular subnetwork (i.e. pink subnetwork) whose neighboring nodes are enriched for genes in 227 
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the gene set of interest (i.e. pink gene set) were determined by Key Driver Analysis in the 228 

Mergeomics R package(4, 28, 29). 229 

 230 

Analysis of public transcriptomic datasets 231 

Public transcriptomic datasets were queried for expression of selected genes (i.e. GUCY1A2, 232 

ANTXR1, USP28, and USP12). GUCY1A2 expression was obtained from two independent RNA-233 

seq datasets: CRISPR/Cas9-induced monoallelic mutations in BMPR2 (n = 6) vs wild-type 234 

control (n = 3) human umbilical vein endothelial cells (HUVEC)(30) and endothelial cells 235 

derived from induced pluripotent stem cells (iPSCs) of patients with hereditary PAH (HPAH) 236 

due to BMPR2 mutations (n = 5) vs control (n = 3)(31). Sequence Read Archive (SRA) data was 237 

downloaded from the NIH Gene Expression Omnibus (GEO) database. SRA files were 238 

converted to FASTQ files using the SRA Toolkit. Sequences were aligned to the GENCODE 239 

human reference genome (v. 32) using HISAT2(7) and transcripts were assembled and 240 

quantified using StringTie(7). DESeq2(9) was used to perform differential expression analysis 241 

and determine P values. ANTXR1 expression in fibroblasts was obtained from an scRNAseq 242 

dataset comparing 3 PAH vs 6 control lungs (32). ANTXR1 expression counts were averaged 243 

across cells within the fibroblast cluster for each sample. Note, myofibroblasts were not 244 

subclustered in this dataset. Wilcoxon rank-sum test was used to determine differential 245 

expression of ANTXR1 in PAH vs. control samples. The expression of USP28 and USP12 was 246 

obtained from a human whole lung microarray of 15 PAH patients vs 11 controls(33) deposited 247 

in the NIH GEO database. P values were obtained from NCBI’s GEO2R. 248 

 249 

Quantitative polymerase chain reaction (qPCR) 250 
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Pulmonary arterial adventitial cells isolated from idiopathic PAH and control lungs were 251 

obtained from PHBI and grown in Human Vascular Smooth Muscle Cell Basal Medium 252 

(M231500, ThermoFisher) supplemented with Smooth Muscle Growth Supplement (S00725, 253 

ThermoFisher) and Antibiotic-Antimycotic 100X (15240096, ThermoFisher). Both PAH and 254 

control cells originated from the lungs of white women age 29 and 33, respectively. Cells were 255 

collected in TRIzol (15596018, ThermoFisher) once grown to 100% confluency between 256 

passages 6 to 10. Different passages served as biological replicates. RNA was extracted from 257 

cells through a series of washes using chloroform (364320025, ThermoFisher), isopropanol 258 

(I9516, MillaporeSigma), and 70% ethanol (459844, MillaporeSigma). RNA was resuspended in 259 

DEPC-Treated Water (AM9922,ThermoFisher) and then converted to cDNA using a High-260 

Capacity cDNA Reverse Transcription Kit (4368814, ThermoFisher) and a Bio-Rad S1000 261 

Thermal Cycler. A qCPR was run using cDNA, DEPC water, PowerUp™ SYBR™ Green 262 

Master Mix (A25743, ThermoFisher) and primers on a Bio-Rad CFX Connect Real-Time PCR 263 

Detection System. Primers were used for ANTXR1 (Forward: 264 

GAGGAAACGGCTTCCGACAT, Reverse: GAGTGCAGCTTTCATGCCAA) and 265 

housekeeping gene RPLP0 (Forward: CAGGTGTTCGACAATGGCAG, Reverse: 266 

ACAAGGCCAGGACTCGTTTG). 267 

 268 

Deconvolution 269 

To serve as a cell type reference for deconvolution, we integrated seven publicly available 270 

human lung single-cell RNAseq datasets(34–40) and identified 37 cell-type clusters using known 271 

marker genes from the literature. Within each cell-type cluster, the average expression of gene 272 

counts was calculated across cells for each individual sample to create a cell-type signature for 273 
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each of the seven datasets. PHBI bulk transcriptomes were deconvoluted with 274 

CIBERSORTx(41) with cell-type signatures from each of the seven datasets as a reference. The 275 

resulting cell fractions using each of the seven dataset-specific reference signatures served as 276 

technical replicates. These technical replicates were then averaged to determine the final 277 

estimated cell fractions for each lung sample. Pearson correlation of deconvoluted cell type 278 

fractions with PAH vs control status (coded 1 and 0, respectively) was calculated across PHBI 279 

lung samples. Wilcoxon rank-sum test was performed on cell fractions between PAH vs. control 280 

samples for vascular cell types. Similar to module-trait correlation analysis, modules were 281 

correlated with cell fractions by calculating Pearson correlations of module eigengenes with 282 

deconvoluted cell fractions across samples. 283 

 284 

Pharmacotranscriptomic analysis 285 

Genes differentially expressed between PAH and control in select co-expression modules (i.e. 286 

pink, royalblue, greenyellow) were queried against the full Connectivity Map(42) (CMap) 287 

database of perturbagen expression signatures induced in human cell lines(42). A less stringent 288 

statistical threshold for differentially expressed genes (P value < 0.05) were used as previously 289 

described(43) to ensure an adequate number of query signature genes to perform the CMap 290 

analysis. A total of 8,559 pharmacologic and genetic perturbagens were screened including both 291 

gene overexpression and knockdown by short hairpin RNA (shRNA). Pattern-matching 292 

algorithms assessed each reference perturbagen profile for the direction and strength of 293 

connectivity with the query signature by a score range of -100 to +100. The summary score was 294 

used across 9 cell lines. Perturbagens with strongly positive connectivity scores indicate highly 295 

similar signatures that mimic that of the query whereas those perturbagens with strongly negative 296 
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scores indicate signatures that strongly reverse that of the query (i.e. genes that are differentially 297 

upregulated in the module query are decreased by the perturbagen or vice versa). We also 298 

assessed the connectivity scores of a total of 171 CMap classes defined as groups of 299 

pharmacologic or genetic CMap perturbagens that share the same mechanism of action or 300 

biological function. 301 

 302 

The pink signature of differentially expressed genes (PAH vs. control; P value < 0.05) was also 303 

queried against the CRISPR knockout (KO) consensus signature database of Library of 304 

Integrated Network-based Cellular Signatures (LINCS) L1000 using SigCom LINCS(44). A 305 

total of 7,502 genes were screened by CRISPR KO from this database. SigCom outputs a Z score 306 

which indicates the degree to which the CRISPR KO signature mimics or reverses the query 307 

signature (i.e. pink) by highly positive or negative scores, respectively. The expression of 12,327 308 

genes were profiled and ranked for each CRISPR KO gene where lowly and highly ranked genes 309 

indicate downregulation and upregulation, respectively, in the CRISPR KO vs. control.  310 

 311 

Results 312 

Characterization of PHBI cohort. 313 

RNA sequencing was performed on a total of 96 explant lungs with pulmonary hypertension 314 

(PH) collected at the time of lung transplantation and 52 control lungs from the Pulmonary 315 

Hypertension Breakthrough Initiative (PHBI) (Table 1 and Figure 1A). WHO group 1 PAH 316 

patients consisted of 94 of 96 PH subjects of which the most common subtypes were idiopathic 317 

PAH (IPAH) and associated PAH (APAH) (43% and 40%, respectively). The majority of PH 318 

patients were WHO functional class III or IV, had significantly impaired hemodynamics by right 319 
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heart catheterization with a mean PVR of 12.7±7.4, and were receiving triple PAH-targeted 320 

therapy (73%) including prostacyclin infusion therapy (85%). Unsupervised hierarchical 321 

clustering and principal component analysis (PCA) showed separation between PH and control 322 

samples suggesting overall differences in the transcriptome between the two groups (Figures 1A-323 

1B). Neither approach showed distinct separation of samples by PAH subgroup suggesting 324 

relative lack of subgroup-specific transcriptional heterogeneity. Furthermore, we did not observe 325 

significant clustering by age, sex, or race among PH or control samples. Moreover, samples did 326 

not cluster by transplant center of tissue origin nor treatment group (Supplemental Figure 1). 327 

Given the female predominance of PH subjects compared to control, sex-stratified analyses were 328 

performed where appropriate. Two outliers (1 IPAH and 1 control) were removed from 329 

downstream analyses (Figures 1A-1B) since network analysis and module detection can be 330 

biased by outlier samples(45). 331 

 332 

The lung transcriptome is significantly altered in PAH 333 

Consistent with the separation observed between PH and control samples by hierarchical 334 

clustering and PCA, differential expression analysis between PAH and control samples yielded 335 

5,253 differentially expressed genes (DEGs; FDR < 0.05) consisting of 22% of the transcriptome 336 

of which 2,719 were upregulated and 2,534 were downregulated (Figure 1C). The top 337 

upregulated genes were HBA2, HBB, LAMP5, HBA1, and MFAP4 whereas the top 338 

downregulated genes were SIGLEC10, PI3, SAA2, SLC36A1, and ALPP. Epithelial-339 

mesenchymal transition (EMT) was the top enriched pathway among genes upregulated in PAH 340 

whereas mTORC1 signaling was the top pathway among downregulated genes (Figure 1D).  341 

 342 
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Co-expression network analysis reveals modules associated with PAH severity.  343 

We then used weighted gene co-expression network analysis (WGCNA)(46) across all samples 344 

to dissect the lung transcriptome into clusters based on gene co-expression, referred to as 345 

modules. Modules organize transcriptional changes of individual genes into clusters which 346 

represent co-regulation or shared biological functions(47) (Figure 2A-B). We identified 20 gene 347 

co-expression modules with a median size of 141 genes (Figure 2C). The expression of genes 348 

within a module can be summarized by their eigengene which represents the first principal 349 

component of gene expression in the module. Correlation of clinicopathologic characteristics 350 

with module eigengenes revealed the pink module of 266 genes to have the most notable pattern 351 

of associations (Figure 2D). The pink module was not only strongly associated with PAH 352 

diagnosis (Figures 2D-2E, Supplemental Figure 2) but also with physiologic, hemodynamic, and 353 

pathologic markers of disease severity based on pulmonary function testing, right heart 354 

catheterization, and histologic analysis of vascular remodeling by morphometry. Specifically, the 355 

pink module correlated with reduced diffusing capacity for carbon monoxide (DLCO), elevated 356 

mean pulmonary artery pressure (mPAP), elevated pulmonary vascular resistance (PVR), and 357 

increased intima or intima plus media thickness of pulmonary arteries. However, the pink 358 

module also correlated with clinical characteristics and blood tests suggestive of compensated 359 

disease, such as lower number of hospitalizations due to PAH, signs of right heart failure, WHO 360 

functional class, NT-proBNP, creatinine, and REVEAL lite score. Among other modules 361 

positively correlated with PAH diagnosis, the royalblue module of 98 genes shared a similar 362 

pattern of clinicopathologic correlation as with the pink module. The greenyellow module of 290 363 

genes had the highest negative correlation with PAH diagnosis (Figure 2F). Pink and royalblue 364 

were also the top two modules most strongly enriched for genes upregulated in PAH lungs and 365 
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greenyellow was most strongly enriched for downregulated genes (Figure 2G, Supplemental 366 

Figure 3). 367 

 368 

The pink module is enriched for PAH genetic variations. 369 

Having identified PAH-relevant modules, we next asked whether these modules might be a cause 370 

or consequence of PAH pathogenesis. To infer causality, we integrated PAH genetic association 371 

studies with our lung-derived modules. Specifically, we employed two distinct computational 372 

approaches, MAGMA(17) and GSA-SNP2(18), to test whether modules were enriched for PAH-373 

associated single nucleotide polymorphisms (SNPs) using the full summary statistics from four 374 

independent PAH genome-wide association studies (GWAS) totaling 11,744 individuals(19, 20): 375 

the US PAH Biobank (PAHB), French Pulmonary Hypertension Allele-Associated Risk 376 

(PHAAR), British Heart Foundation Pulmonary Arterial Hypertension (BHFPAH), and UK 377 

National Institute for Health Research BioResource (NIHRBR) cohorts. Despite different 378 

statistical methods, MAGMA and GSA-SNP2 captured similar relative associations of genes 379 

with PAH genetic variation and neither approach was biased towards gene size or number of 380 

SNPs localizing to a gene (Supplemental Figure 4). We found that only the pink module was 381 

significantly enriched for PAH-associated SNPs using both approaches and across multiple 382 

cohorts (Figures 2H-2I): PAHB and PHAAR cohorts by both methods, and BHFPAH using 383 

GSA-SNP2. This finding suggests that pink module genes are not only associated with PAH 384 

diagnosis and severity, but also enriched with genetic risk of developing PAH. 385 

 386 

The pink module is co-regulated with known PAH genes and is enriched for Wnt signaling and 387 

EMT pathways. 388 
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To delineate the regulatory relationships among genes within co-expression modules, we 389 

employed a Bayesian network analysis to build a gene regulatory network of the human lung by 390 

incorporating 2,066 lung transcriptomes, lung-specific expression quantitative trait loci (eQTL), 391 

and known transcription factor-target gene relationships (Supplemental Figure 5). Projection of 392 

co-expression module genes onto this lung regulatory network confirmed that the genes within 393 

individual modules are in close neighborhoods in the gene regulatory network analyses (Figure 394 

3A). 395 

 396 

We found that a number of established PAH genes co-localize with pink module genes in the 397 

Bayesian gene regulatory network, suggesting a regulatory relationship between PAH genes and 398 

pink module genes (Figure 3B). For example, BMPR2, the most well-established causal PAH 399 

gene, was predicted to regulate GUCY1A2, a pink module gene that is also upregulated in PAH 400 

lungs (Supplemental Figure 6). To validate this prediction, we queried public RNA-seq datasets 401 

(30, 31) and found that GUCY1A2 was upregulated in CRISPR-induced BMPR2 mutant 402 

endothelial cells (ECs), and in ECs derived from induced pluripotent stem cells (iPSCs) from 403 

hereditary PAH patients with BMPR2 mutations (Figures 3C-3D). 404 

 405 

We then used gene set enrichment analysis (GSEA) to functionally characterize the pink 406 

signature which we defined as the correlation of the pink eigengene with the expression of genes 407 

across the transcriptome. We found that regulation of Wnt signaling and epithelial mesenchymal 408 

transition (EMT), both important pathways in PAH(48–50), were strongly enriched in the pink 409 

module (Figures 3E-G). ANTXR1 was the top pink hub gene most connected to pink module 410 

genes and most correlated with PAH (Figure 3G). While not traditionally associated with Wnt 411 
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signaling or EMT, ANTXR1 has been recently implicated in various cancers through such 412 

pathways(51, 52). Furthermore, the strongest pairwise connection among pink genes as 413 

determined by WGCNA (out of >30k pairs) was between ANTXR1 and SFRP4, a secreted 414 

frizzled-related protein and one of 3 pink genes known to be involved in both Wnt signaling and 415 

EMT (Figures 3G-3H). Therefore, the pink module and its top PAH-associated gene ANTXR1 416 

may play a role in PAH through modulation of Wnt signaling and EMT. 417 

 418 

Cell type deconvolution reveals cell-type specificity in PAH lung modules. 419 

Having identified PAH-specific transcriptional changes at the whole lung level, we next asked 420 

whether cell-type fractional changes could be inferred from the transcriptomes of PAH and 421 

control lungs by deconvolution analysis based on transcriptomic references of 37 lung cell type 422 

clusters from seven publicly available human lung single-cell RNAseq datasets (34–40) (Figures 423 

4A-4B; Supplemental Figure 7). Using the cell-type references from this integrated reference 424 

atlas, we deconvoluted PHBI bulk transcriptomes using CIBERSORTx(41) and found that PAH 425 

samples clustered together based on estimated cell fractions (Supplemental Figure 8) and that 426 

specific cell-type fractions correlated positively or negatively with PAH, such as endothelial (i.e. 427 

lymphatic and arterial) and myeloid (i.e. interstitial macrophage and classical monocyte) 428 

subpopulations, respectively (Figure 4C). In addition to lymphatic and arterial endothelial cells, 429 

myofibroblast fractions were particularly abundant in PAH samples relative to control, whereas 430 

cell fractions of other vascular mesenchymal subpopulations (i.e. fibroblast, smooth muscle cell 431 

and pericyte) were unchanged. Endothelial capillary 1 (EndoCap1) fractions were decreased in 432 

PAH lungs consistent with microvascular rarefaction, a known feature of PAH(53). 433 

 434 
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We then integrated the deconvoluted cell fractions with our bulk lung-derived co-expression 435 

modules to decipher cell-type specificity of individual modules. We identified distinct patterns of 436 

correlation between cell fractions and module eigengenes where, for example, some modules 437 

were highly specific to particular cell types such as yellow to ciliated cells and cyan to CD8+ T 438 

cells (Figure 4E). Among the top correlations was the PAH-associated pink module to 439 

myofibroblast fractions (r = 0.78). In a complementary approach to infer cell specificity, we then 440 

performed GSEA using known cell-type signatures of 341 cell types across >9 tissues and found 441 

the pink module to be most enriched in the myofibroblast signature (Figure 4F). Given this 442 

finding, we then asked whether ANTXR1, the top pink gene whose expression is upregulated in 443 

PAH lungs, might be upregulated in PAH lung fibroblasts specifically. Supporting our cell-type 444 

deconvolution analyses, we found that ANTXR1 is upregulated in PAH fibroblasts by lung 445 

single-cell RNA-sequencing in a published dataset (in which myofibroblasts were not 446 

subclustered) (32) and in pulmonary arterial adventitial cells isolated from PAH lungs by qPCR 447 

(Figures 4G-4H). 448 

 449 

Pharmacotranscriptomics identifies novel therapeutic targets. 450 

Having prioritized the pink module by association with PAH diagnosis, clinicopathologic 451 

severity, and genetic risk, we next investigated whether pattern matching the pink module 452 

signature with known pharmacologic and genetic perturbation signatures could reveal novel 453 

therapeutic targets. We screened the pink signature against 8,559 perturbation signatures from 454 

Connectivity Map (CMap) (42). These CMap signatures were grouped into 171 classes that share 455 

similar mechanisms of action or biological functions. We found ubiquitin specific peptidase 456 

(USP) loss-of-function by short hairpin RNAs (shRNAs) to have the highest connectivity score 457 
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of all CMap classes, which suggests that knockdown of USPs induces a transcriptional response 458 

highly similar to the pink signature (Figure 5A). Indeed, six different USPs (USP7, USP22, 459 

USP12, USP20, USP1, and USP15) were among the top scoring perturbations (Figure 5B). We 460 

next queried an independent genetic perturbation screen of 7,502 genes by CRISPR knockout 461 

(KO) from the LINCS L1000 database(44) and found that USP28 KO was a top mimicker of the 462 

pink signature (Figures 5C-5D). Therefore, targeting members of the USP family by either 463 

complete knockout via CRISPR or partial knockdown via shRNA induced transcriptional 464 

changes similar to that of pink module genes in PAH lungs. 465 

 466 

Interestingly, Janus kinase (JAK) and cyclin-dependent kinase (CDK) inhibitors, both recently 467 

studied as potential therapies in PAH(54–56), were also among the top CMap classes whose 468 

transcriptional signature matched that of the pink module (Figure 5A). We found a similar 469 

connectivity profile for another co-expression module, royalblue, containing a distinct set of 98 470 

genes which also shared with pink a similar pattern of clinicopathologic correlations (Figures 5A 471 

and 2D) and was second only to pink as a top enriched module for upregulated PAH DEGs 472 

(Figure 2G). This suggests converging and targetable pathways between pink and royalblue 473 

genes. In contrast, greenyellow, the most enriched module for downregulated DEGs, did not 474 

show a strong CMap matching profile (Figure 5A). Indeed, royalblue was also enriched for Wnt 475 

signaling and EMT and a number of its module member genes co-localized to the pink sub-476 

regulatory network (Supplemental Figure 9) such as LTBP2, a recently identified biomarker for 477 

PAH(57). 478 

 479 

 480 
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Given that JAK and CDK inhibitors, both of which mimicked the pink signature (Figure 5A), 481 

may have a therapeutic role in PAH based on recent preclinical studies(54–56) and given that the 482 

pink eigengene correlated with clinical markers of favorable disease prognosis (Figure 2D), we 483 

reasoned that the pink signature could be beneficial in PAH. As downregulation of USPs induced 484 

transcriptomic signatures that mimicked that of the pink module in our CMap and L1000 485 

analyses, we postulate that targeting USPs might also have a therapeutic role. We found that 486 

USP28 and USP12, whose downregulation led to transcriptomic responses mimicking that of the 487 

pink module, were upregulated in PAH lungs in our PHBI dataset (Figure 5E) and in an 488 

independent microarray (Figures 5F-5G). These USPs may serve as top candidates for PAH 489 

therapeutic development. 490 

 491 

Discussion 492 

Leveraging the largest PAH lung biobank to date and the first to use RNA-sequencing combined 493 

with state-of-the-art multiomic integration and systems biology approaches, we dissected the 494 

transcriptional landscape of PAH lungs to uncover a novel gene module enriched in upregulated 495 

genes and associated with clinicopathologic severity, genetic risk, specific vascular cell types, 496 

and new therapeutic targets in PAH. 497 

 498 

We identified by network analysis a set of 266 co-expressed genes called the pink module that 499 

was not only associated with objective measures of underlying disease severity such as increased 500 

PVR, increased intimal thickness, and reduced DLCO, but also associated with lower risk of 501 

mortality by REVEAL lite as well as indicators of clinically compensated PAH such as lower 502 

number of PAH hospitalizations, signs of right heart failure, WHO functional class and NT-503 
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proBNP (Figure 2D). We hypothesize that the pink module is active in response to the 504 

underlying disease process to counteract disease progression in PAH. Supporting this possibility, 505 

JAK and CDK inhibitors, both of which counteract preclinical PAH (54–56), were top 506 

perturbagens predicted to mimic the pink signature in our CMap analysis (Figure 5A). Moreover, 507 

our regulatory network analysis uncovered a novel connection where deficiency of BMPR2, the 508 

most well-established causal PAH gene, leads to an upregulation of pink gene GUCY1A2 509 

(Figures 3B-3D). GUCY1A2 encodes the alpha subunit of soluble guanylate cyclase 1 (GC-1), 510 

the primary receptor of nitric oxide and the stimulation of which is the primary mechanism of 511 

action of riociguat, an FDA-approved therapy in clinical use to treat PAH patients. Therefore, 512 

supporting our hypothesis that the pink module might be a response to PAH to counteract the 513 

disease, deficiency of BMPR2, which is causative and harmful in PAH pathogenesis, leads to 514 

upregulation of the pink module gene GUCY1A2 which is beneficial in PAH. 515 

 516 

EMT and Wnt signaling were top pathways enriched in the pink module, both of which are 517 

known to play a critical role in PAH pathobiology and are interrelated (Wnt signaling induces 518 

EMT) (Figures 3E-3G)(48, 49, 58, 59). In terms of specific pink genes and their potential role in 519 

these pathways, ANTXR1, a transmembrane protein that interacts with extracellular matrix 520 

proteins, was the top hub gene most connected to other pink module genes and it was 521 

upregulated in not only PAH lungs (Figure 1C) but specifically in PAH lung fibroblasts (Figures 522 

4G-4H). While its role in PAH has not been investigated, one study found that ANTXR1-523 

deficient fibroblasts showed increased expression of EMT markers Col1a1 and Fn raising the 524 

possibility that ANXTXR1 might modulate EMT in a beneficial manner in PAH(60). 525 

Furthermore, SFRP4, which showed the strongest pairwise correlation with ANTXR1 among all 526 
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pink gene pairs (Figure 3H), is a secreted Wnt antagonist that has been shown to inhibit EMT in 527 

cancer cells(61, 62). Therefore, the pink module may counteract the PAH disease process by 528 

modulation of EMT and Wnt signaling. 529 

 530 

The following question then arises- if the pink module and its member genes (i.e. ANTXR1, 531 

SFRP4, and GUCY1A2) are beneficial in PAH and upregulated in explant lungs, why did the 532 

disease in these patients still progress to the point of needing a lung transplantation? One 533 

possibility is that the pink module is activated too little and/or too late in these patients or the 534 

activation is not sufficient to counteract the effects of other deleterious pathways. Despite its 535 

relatively large size of 266 genes, the pink signature can be leveraged using 536 

pharmacotranscriptomic pattern matching algorithms to identify novel therapeutic targets for 537 

testing in future investigations with preclinical models. Using such an approach, we identified 538 

JAK and CDK inhibitors as well as ubiquitin specific peptidase (USP) loss-of-function as CMap 539 

perturbagen classes which induce signatures that match that of pink, but also ubiquitin specific 540 

peptidase (USP) loss-of-function as the top CMap class mimicker of the pink signature. As main 541 

members of the deubiquitinase family, USPs are involved in diverse processes such as cell cycle 542 

progression, apoptosis, EMT, and DNA damage repair and have been strongly implicated in 543 

cancer progression(63). Furthermore, USPs regulate PAH-relevant pathways such as NFkB, 544 

TGFbeta, and Wnt signaling and have been investigated as therapeutic targets in cancer and 545 

other fields(64, 65), yet their role in PAH has not yet been described. We demonstrated that 546 

targeting members of the USP family by either complete knockout via CRISPR or partial 547 

knockdown via shRNA induced transcriptional changes similar to that of pink DEGs in PAH 548 

lungs (Figure 5). Specifically, USP28 and USP12 may serve as particularly attractive targets for 549 
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downstream investigation as they were also upregulated in PAH lungs (Figures 5E-5G). While 550 

studies on USP12 are limited, USP28 has been shown to activate Wnt signaling(66, 67) and its 551 

inhibition blocks EMT progression in cancer cells(68). Thus, inhibition of Wnt signaling and 552 

EMT may be the common pathways shared between USP loss-of-function and the pink module.  553 

 554 

Given that the PHBI cohort consisted of patients with advanced stage PAH at the time of lung 555 

transplantation, our results are likely not representative of the full range of disease and our 556 

analysis was limited in discerning cause versus consequence of PAH. However, the deep clinical 557 

phenotyping allowed us to make correlations with disease severity, and GWAS integration 558 

enabled us to infer causality in PAH pathogenesis. The majority of patients had idiopathic PAH 559 

and thus our findings may not be generalizable to other WHO Group 1 PAH subtypes or other 560 

WHO groups, and our sample size of other PAH subtypes was insufficiently powered to detect 561 

subtype-specific differences. The majority of our patients were also female, reflective of the 562 

strong female predominance of PAH. However, our sensitivity analyses did not reveal significant 563 

sex-specific differences in the top pathway and module enrichments (Supplemental Figure 10). 564 

Finally, while heterogeneity of PAH-targeted therapy in these patients could affect the 565 

transcriptome profiles, the majority of patients were on triple therapy including prostacyclin 566 

infusion. Thus, we did not explore treatment-specific differences. 567 

 568 

In conclusion, our study leverages the largest PAH lung biobank to date to provide an in-depth 569 

analysis of the lung transcriptional landscape of PAH using multiomic integration and systems 570 

biology approaches. Through this analysis, we uncovered a novel gene network module that is 571 

associated with PAH risk and severity, may counteract disease progression through modulation 572 
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of EMT and Wnt signaling, and may be regulated by USPs. Future experimental studies such as 573 

knockdown of USPs in PAH vascular cells are warranted to further investigate the role and 574 

therapeutic potential of the pink module and targeting USPs in PAH. 575 

 576 

Acknowledgements 577 

The authors thank the investigators, personnel, and participants of the PHBI, particularly those 578 

involved in the transplant and preparation centers: Allegheny University of the Health Sciences 579 

(PI: Raymond L. Benza, M.D.); Baylor College of Medicine (George Noon, M.D.); Cleveland 580 

Clinic (PI: Serpil Erzurum, M.D.); Duke University (PI: Pang-Chieh Jerry Eu, M.D.); Stanford 581 

University-UCSF (PI: Marlene Rabinovitch, M.D.); University of Alabama (PI: Keith Wille, 582 

M.D.; prior PI: Raymond L. Benza, M.D.); University of California, San Diego (PI: Patricia 583 

Thistlethwaite, M.D., Ph.D); Vanderbilt University (Barbara Meyrick, Ph.D.).  584 

Supported by ALA CA-675591 (J.H.) and NHLBI R01HL162124 (M.E.). 585 

 586 

References 587 

1. Stearman RS, Bui QM, Speyer G, Handen A, Cornelius AR, Graham BB, et al. Systems 588 

Analysis of the Human Pulmonary Arterial Hypertension Lung Transcriptome. Am J Respir 589 

Cell Mol Biol 2019;60:637–649. 590 

2. Hoffmann J, Wilhelm J, Olschewski A, Kwapiszewska G. Microarray analysis in pulmonary 591 

hypertension. European Respiratory Journal 2016;48:229–241. 592 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


3. Porcu E, Sadler MC, Lepik K, Auwerx C, Wood AR, Weihs A, et al. Differentially 593 

expressed genes reflect disease-induced rather than disease-causing changes in the 594 

transcriptome. Nat Commun 2021;12:5647. 595 

4. Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, et al. Mergeomics: 596 

multidimensional data integration to identify pathogenic perturbations to biological systems. 597 

BMC Genomics 2016;17:874. 598 

5. Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, et al. 599 

Modern Age Pathology of Pulmonary Arterial Hypertension. American Journal of 600 

Respiratory and Critical Care Medicine 2012;186:261–272. 601 

6. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast 602 

universal RNA-seq aligner. Bioinformatics 2013;29:15–21. 603 

7. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of 604 

RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016;11:1650–605 

1667. 606 

8. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level 607 

estimates improve gene-level inferences. F1000Res 2015;4:1521. 608 

9. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-609 

seq data with DESeq2. Genome Biology 2014;15:550. 610 

10. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. 611 

DisGeNET: a comprehensive platform integrating information on human disease-associated 612 

genes and variants. Nucleic Acids Res 2017;45:D833–D839. 613 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


11. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, et al. The 614 

Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res 2019;47:D948–615 

D954. 616 

12. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et 617 

al. The harmonizome: a collection of processed datasets gathered to serve and mine 618 

knowledge about genes and proteins. Database (Oxford) 2016;2016:. 619 

13. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular 620 

Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015;1:417–425. 621 

14. The Gene Ontology Consortium, Carbon S, Douglass E, Good BM, Unni DR, Harris NL, et 622 

al. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research 623 

2021;49:D325–D334. 624 

15. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis 625 

of multimodal single-cell data. Cell 2021;184:3573-3587.e29. 626 

16. Benza RL, Kanwar MK, Raina A, Scott JV, Zhao CL, Selej M, et al. Development and 627 

Validation of an Abridged Version of the REVEAL 2.0 Risk Score Calculator, REVEAL 628 

Lite 2, for Use in Patients With Pulmonary Arterial Hypertension. Chest 2021;159:337–346. 629 

17. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of 630 

GWAS data. PLoS Comput Biol 2015;11:e1004219. 631 

18. Yoon S, Nguyen HCT, Yoo YJ, Kim J, Baik B, Kim S, et al. Efficient pathway enrichment 632 

and network analysis of GWAS summary data using GSA-SNP2. Nucleic Acids Res 633 

2018;46:e60. 634 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


19. Rhodes CJ, Batai K, Bleda M, Haimel M, Southgate L, Germain M, et al. Genetic 635 

determinants of risk in pulmonary arterial hypertension: international genome-wide 636 

association studies and meta-analysis. Lancet Respir Med 2019;7:227–238. 637 

20. Germain M, Eyries M, Montani D, Poirier O, Girerd B, Dorfmüller P, et al. Genome-wide 638 

association analysis identifies a susceptibility locus for pulmonary arterial hypertension. 639 

Nature Genetics 2013;45:518–521. 640 

21. Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, et al. Integrating large-scale 641 

functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 642 

2008;40:854–861. 643 

22. Lesseur C, Ferreiro-Iglesias A, McKay JD, Bossé Y, Johansson M, Gaborieau V, et al. 644 

Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive 645 

squamous cell cancers. PLoS Genet 2021;17:e1009254. 646 

23. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human 647 

tissues. Science 2020;369:1318–1330. 648 

24. Bovolenta LA, Acencio ML, Lemke N. HTRIdb: an open-access database for experimentally 649 

verified human transcriptional regulation interactions. BMC Genomics 2012;13:405. 650 

25. Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, et al. TRRUST: a reference database of 651 

human transcriptional regulatory interactions. Sci Rep 2015;5:11432. 652 

26. Portales-Casamar E, Kirov S, Lim J, Lithwick S, Swanson MI, Ticoll A, et al. PAZAR: a 653 

framework for collection and dissemination of cis-regulatory sequence annotation. Genome 654 

Biology 2007;8:R207. 655 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a 656 

software environment for integrated models of biomolecular interaction networks. Genome 657 

Res 2003;13:2498–2504. 658 

28. Arneson D, Bhattacharya A, Shu L, Mäkinen V-P, Yang X. Mergeomics: a web server for 659 

identifying pathological pathways, networks, and key regulators via multidimensional data 660 

integration. BMC Genomics 2016;17:722. 661 

29. Ding J, Blencowe M, Nghiem T, Ha S, Chen Y-W, Li G, et al. Mergeomics 2.0: a web server 662 

for multi-omics data integration to elucidate disease networks and predict therapeutics. 663 

Nucleic Acids Research 2021;49:W375–W387. 664 

30. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as 665 

a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell 666 

mechanics. PLoS Biol 2019;17:e3000557. 667 

31. Gu M, Shao N-Y, Sa S, Li D, Termglinchan V, Ameen M, et al. Patient-Specific iPSC-668 

Derived Endothelial Cells Uncover Pathways that Protect against Pulmonary Hypertension in 669 

BMPR2 Mutation Carriers. Cell Stem Cell 2017;20:490-504.e5. 670 

32. Saygin D, Tabib T, Bittar HET, Valenzi E, Sembrat J, Chan SY, et al. Transcriptional 671 

profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulm Circ 672 

2020;10:. 673 

33. Mura M, Cecchini MJ, Joseph M, Granton JT. Osteopontin lung gene expression is a marker 674 

of disease severity in pulmonary arterial hypertension. Respirology 2019;24:1104–1110. 675 

34. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, et al. 676 

Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology 677 

of Pulmonary Fibrosis. Am J Respir Crit Care Med 2018;doi:10.1164/rccm.201712-2410OC. 678 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


35. Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, et al. Single-cell RNA-679 

seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary 680 

fibrosis. Science Advances 2020;6:eaba1983. 681 

36. Madissoon E, Wilbrey-Clark A, Miragaia RJ, Saeb-Parsy K, Mahbubani KT, 682 

Georgakopoulos N, et al. scRNA-seq assessment of the human lung, spleen, and esophagus 683 

tissue stability after cold preservation. Genome Biology 2019;21:1. 684 

37. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, et al. Construction of a human cell 685 

landscape at single-cell level. Nature 2020;581:303–309. 686 

38. Morse C, Tabib T, Sembrat J, Buschur K, Bittar HT, Valenzi E, et al. Proliferating 687 

SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. European 688 

Respiratory Journal 2019;1802441.doi:10.1183/13993003.02441-2018. 689 

39. Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S, Neumark N, et al. Single-cell 690 

connectomic analysis of adult mammalian lungs. Science Advances 2019;5:eaaw3851. 691 

40. Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, Calvi CL, et al. Single-cell 692 

RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in 693 

pulmonary fibrosis. Science Advances 2020;6:eaba1972. 694 

41. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating 695 

immune cells with CIBERSORT. Methods Mol Biol 2018;1711:243–259. 696 

42. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity 697 

Map: using gene-expression signatures to connect small molecules, genes, and disease. 698 

Science 2006;313:1929–1935. 699 

43. Hong J, Arneson D, Umar S, Ruffenach G, Cunningham CM, Ahn IS, et al. Single-Cell 700 

Study of Two Rat Models of Pulmonary Arterial Hypertension Reveals Connections to 701 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


Human Pathobiology and Drug Repositioning. Am J Respir Crit Care Med 2021;203:1006–702 

1022. 703 

44. Evangelista JE, Clarke DJB, Xie Z, Lachmann A, Jeon M, Chen K, et al. SigCom LINCS: 704 

data and metadata search engine for a million gene expression signatures. Nucleic Acids 705 

Research 2022;50:W697–W709. 706 

45. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional 707 

organization of the transcriptome in human brain. Nat Neurosci 2008;11:1271–1282. 708 

46. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. 709 

BMC Bioinformatics 2008;9:559. 710 

47. Weirauch MT. Gene Coexpression Networks for the Analysis of DNA Microarray Data. 711 

Applied Statistics for Network Biology John Wiley & Sons, Ltd; 2011. p. 215–712 

250.doi:10.1002/9783527638079.ch11. 713 

48. Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Péchoux C, Bogaard HJ, et al. 714 

Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 715 

2015;131:1006–1018. 716 

49. de Jesus Perez V, Yuan K, Alastalo T-P, Spiekerkoetter E, Rabinovitch M. Targeting the 717 

Wnt signaling pathways in pulmonary arterial hypertension. Drug Discov Today 718 

2014;19:1270–1276. 719 

50. West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, et al. Identification of a 720 

common Wnt-associated genetic signature across multiple cell types in pulmonary arterial 721 

hypertension. Am J Physiol Cell Physiol 2014;307:C415–C430. 722 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


51. Huang X, Zhang J, Zheng Y. ANTXR1 Is a Prognostic Biomarker and Correlates With 723 

Stromal and Immune Cell Infiltration in Gastric Cancer. Frontiers in Molecular Biosciences 724 

2020;7:. 725 

52. Ding C, Liu J, Zhang J, Wan Y, Hu L, Charwudzi A, et al. Tumor Endothelial Marker 8 726 

Promotes Proliferation and Metastasis via the Wnt/β-Catenin Signaling Pathway in Lung 727 

Adenocarcinoma. Frontiers in Oncology 2021;11:. 728 

53. Chaudhary KR, Taha M, Cadete VJJ, Godoy RS, Stewart DJ. Proliferative Versus 729 

Degenerative Paradigms in Pulmonary Arterial Hypertension. Circulation Research 730 

2017;120:1237–1239. 731 

54. Leopold JA. Inhibiting Jak2 Ameliorates Pulmonary Hypertension: Fulfilling the Promise of 732 

Precision Medicine. Am J Respir Cell Mol Biol 2021;64:12–13. 733 

55. Yerabolu D, Weiss A, Kojonazarov B, Boehm M, Schlueter BC, Ruppert C, et al. Targeting 734 

Jak-Stat Signaling in Experimental Pulmonary Hypertension. Am J Respir Cell Mol Biol 735 

2021;64:100–114. 736 

56. Tabarroki A, Lindner DJ, Visconte V, Zhang L, Rogers HJ, Parker Y, et al. Ruxolitinib leads 737 

to improvement of pulmonary hypertension in patients with myelofibrosis. Leukemia 738 

2014;28:1486–1493. 739 

57. Boucherat O, Yokokawa T, Krishna V, Kalyana-Sundaram S, Martineau S, Breuils-Bonnet 740 

S, et al. Identification of LTBP-2 as a plasma biomarker for right ventricular dysfunction in 741 

human pulmonary arterial hypertension. Nat Cardiovasc Res 2022;1:748–760. 742 

58. Stenmark KR, Frid M, Perros F. Endothelial-to-Mesenchymal Transition: An Evolving 743 

Paradigm and a Promising Therapeutic Target in PAH. Circulation 2016;133:1734–1737. 744 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


59. Ma J, Sanchez-Duffhues G, Goumans M-J, ten Dijke P. TGF-β-Induced Endothelial to 745 

Mesenchymal Transition in Disease and Tissue Engineering. Frontiers in Cell and 746 

Developmental Biology 2020;8:. 747 

60. Hu K, Olsen BR, Besschetnova TY. Cell autonomous ANTXR1-mediated regulation of 748 

extracellular matrix components in primary fibroblasts. Matrix Biol 2017;62:105–114. 749 

61. Ford CE, Jary E, Ma SSQ, Nixdorf S, Heinzelmann-Schwarz VA, Ward RL. The Wnt 750 

Gatekeeper SFRP4 Modulates EMT, Cell Migration and Downstream Wnt Signalling in 751 

Serous Ovarian Cancer Cells. PLoS One 2013;8:e54362. 752 

62. Warrier S, Balu SK, Kumar AP, Millward M, Dharmarajan A. Wnt antagonist, secreted 753 

frizzled-related protein 4 (sFRP4), increases chemotherapeutic response of glioma stem-like 754 

cells. Oncol Res 2013;21:93–102. 755 

63. Young M-J, Hsu K-C, Lin TE, Chang W-C, Hung J-J. The role of ubiquitin-specific 756 

peptidases in cancer progression. Journal of Biomedical Science 2019;26:42. 757 

64. Chen S, Liu Y, Zhou H. Advances in the Development Ubiquitin-Specific Peptidase (USP) 758 

Inhibitors. International Journal of Molecular Sciences 2021;22:4546. 759 

65. Zhang X-W, Feng N, Liu Y-C, Guo Q, Wang J-K, Bai Y-Z, et al. Neuroinflammation 760 

inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative 761 

disease therapy. Science Advances 2022;8:eabo0789. 762 

66. Chen L, Xu Z, Li Q, Feng Q, Zheng C, Du Y, et al. USP28 facilitates pancreatic cancer 763 

progression through activation of Wnt/β-catenin pathway via stabilising FOXM1. Cell Death 764 

Dis 2021;12:1–12. 765 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


67. Sun X, Cai M, Wu L, Zhen X, Chen Y, Peng J, et al. Ubiquitin-specific protease 28 766 

deubiquitinates TCF7L2 to govern the action of the Wnt signaling pathway in hepatic 767 

carcinoma. Cancer Sci 2022;113:3463–3475. 768 

68. Liu Z, Zhao T, Li Z, Sun K, Fu Y, Cheng T, et al. Discovery of [1,2,3]triazolo[4,5-769 

d]pyrimidine derivatives as highly potent, selective, and cellularly active USP28 inhibitors. 770 

Acta Pharmaceutica Sinica B 2020;10:1476–1491. 771 

69. Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, et al. Protocol Update for Large-772 

scale genome and gene function analysis with PANTHER Classification System (v.14.0). 773 

Nat Protoc 2019;14:703–721. 774 

70. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic 775 

data across different conditions, technologies, and species. Nature Biotechnology 776 

2018;36:411–420. 777 

 778 

Figure Legends 779 

Figure 1: The lung transcriptome is significantly altered in PAH. (A) Unsupervised 780 

hierarchical clustering of PHBI transcriptomes: 17,567 genes after filtering the bottom 25% of 781 

genes with the least variation across samples. Samples are annotated by age, sex, race, and 782 

diagnosis. Two outliers are circled. (B) PCA plot showing PCA of all 23,355 detected genes 783 

where samples are colored by diagnosis. The same two outliers as in (A) are circled. (C) Volcano 784 

plot showing upregulated genes colored in red and downregulated genes colored in green. Grey 785 

dots indicate genes with FDR ≥ 0.05. (D) Bar plot showing GSEA results using the Hallmark 786 

pathway database. Pathways enriched in genes upregulated in PAH are colored in red and 787 
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pathways enriched in downregulated genes in green. Only pathways with FDR < 0.05 are shown. 788 

IPAH = idiopathic PAH; APAH = associated PAH; HPAH = hereditary PAH; PVOD = 789 

pulmonary veno-occlusive disease; WHO4 = WHO group 4 PAH; FDR = false discovery rate; 790 

log2FC = log2 fold change; NES = normalized enrichment score; EMT = epithelial-791 

mesenchymal transition. 792 

 793 

Figure 2: Co-expression network analysis reveals modules associated with PAH severity 794 

and genetic variants. (A) Schematic of integrative analytical strategy centered around co-795 

expression modules. (B) Gene clustering dendrogram as determined by WGCNA with color 796 

module assignments shown at the bottom. (C) Bar plot showing number of genes in each 797 

module. (D) Heatmap showing significant (P < 0.05) Pearson correlations of module eigengenes 798 

with clinical and pathologic characteristics where red and blue indicate positive and negative 799 

correlation, respectively. Larger size dots indicate stronger correlation. No. hospitalizations 800 

indicates number of hospitalizations due to PAH between the time of diagnostic RHC and lung 801 

transplantation. R heart failure signs indicate signs of right heart failure such as ascites or leg 802 

swelling. Intima and intima plus media thickness were determined by morphometric analysis of 803 

volume density of pulmonary arteries in histological lung sections. (E-F) Scatter plots where 804 

each dot represents a gene in the (E) pink or (F) greenyellow module. Red and blue dots indicate 805 

up- or downregulation in PAH lungs, respectively. Genes are plotted by the Pearson correlation 806 

of their expression with PAH diagnosis (vs control) on the y-axis and the module eigengene on 807 

the x-axis. (G) Dot plot showing the normalized enrichment score (NES) of modules for the PAH 808 

lung differential transcriptome as determined by GSEA. Larger size dots indicate stronger FDR 809 

value. (H-I) Dot plots showing enrichment of modules for PAH GWAS SNPs using two distinct 810 
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computational methods, (H) MAGMA, and (I) GSA-SNP2, across four independent PAH 811 

GWAS cohorts. Vertical red dotted lines indicate significance threshold. SNPs were mapped to 812 

genes by chromosomal proximity (within 20 kilobases from the 5’ or 3’ ends of a gene) and 813 

genes were scored for association with PAH based on disease-SNP p-value associations from 814 

GWAS summary statistics. Gene scores were then used in competitive gene-set analyses to 815 

identify module enrichment for PAH common genetic variation. To aggregate genetic variants 816 

into a gene score, the mean c2 statistic and the log-minimum GWAS p-value for all SNPs 817 

localizing to a gene were used in MAGMA and GSA-SNP2, respectively. To determine 818 

significance, MAGMA uses a linear mixed model whereas GSA-SNP2 uses a standard normal 819 

distribution. Both methods adjust for gene size and gene density (the number of SNPs assigned 820 

to a given gene). WGCNA = weighted gene co-expression network analysis; GWAS = genome-821 

wide association study; scRNAseq = single-cell RNA sequencing; Dx = diagnosis; PFT = 822 

pulmonary function test; RHC = right heart catheterization; Histo = histology; DLCO = diffusing 823 

capacity for carbon monoxide; FVC/DLCO = ratio of forced vital capacity to DLCO; mPAP = 824 

mean pulmonary artery pressure; PVR = pulmonary vascular resistance; REVEAL = Registry to 825 

Evaluate Early and Long-Term PAH Disease Management; cor = correlation; PAHB = US PAH 826 

Biobank; PHAAR = French Pulmonary Hypertension Allele-Associated Risk; BHFPAH = 827 

British Heart Foundation Pulmonary Arterial Hypertension; UK = UK National Institute for 828 

Health Research BioResource (NIHRBR); MAGMA = Multi-marker Analysis of GenoMic 829 

Annotation; FDR = false discovery rate. 830 

 831 

Figure 3: The pink module is co-regulated with known PAH genes and is enriched in Wnt 832 

signaling and EMT pathways. (A) Bayesian gene regulatory network constructed from 2,066 833 
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lung transcriptomes with incorporation of lung-specific expression quantitative trait loci (eQTL), 834 

and known transcription factor-target gene relationships. Nodes represent genes. Edges represent 835 

inferred gene-gene regulation. Node positions were determined by a prefuse force-directed 836 

algorithm. Genes from co-expression modules are shown projected onto this regulatory network 837 

with the different color nodes representing module membership. The largest modules with >3000 838 

genes (turquoise, blue, and brown) are not shown to allow better visualization of other modules. 839 

(B) Pink subnetwork where pink genes and known PAH genes (red nodes) from disease-gene 840 

databases (Comparative Toxicogenomics Database(11) and DisGeNET(10)) were projected onto 841 

the lung Bayesian regulatory network in (A). BMPR2-GUCY1A2 pair is highlighted in the upper 842 

right where the arrow represents the predicted directional regulatory relationship. Larger size 843 

nodes represent hub genes where node size is proportional to -log10(FDR) as determined by Key 844 

Driver Analysis (4, 28, 29). Light grey nodes represent hub genes of the pink subnetwork that are 845 

neither pink nor red genes. (C-D) Box plots showing GUCY1A2 expression two independent 846 

RNA-seq datasets: (C) CRISPR/Cas9-induced monoallelic mutations in BMPR2 (n = 6) vs wild-847 

type control (n = 3) human umbilical vein endothelial cells (HUVEC)(30) and (D) endothelial 848 

cells (ECs) derived from induced pluripotent stem cells (iPSCs) of patients with hereditary PAH 849 

(HPAH) due to BMPR2 mutations (n = 5) vs control (n = 3)(31). P values were determined by 850 

DESeq2 for (C) and (D). (E-F) Dots plots showing Gene Set Enrichment Analysis (GSEA) of the 851 

pink module signature using (E) Gene Ontology (GO) and (F) Hallmark(13) gene sets where y-852 

axis represents normalized enrichment scores (NES) in which scores greater than or less than 853 

zero represent gene sets enriched in genes positively or negatively correlated with the pink 854 

eigengene, respectively. The x-axis represents gene sets ordered by their enrichment score. 855 

Select top gene sets are labeled: Regulation of Wnt signaling (NES score 2.29, NES rank 4 of 856 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


6,033) in (E) and Epithelial Mesenchymal Transition (NES score 2.30, NES rank 1 of 50) in (F).  857 

Dots larger in size represent higher -log10(P) values. (G) Scatter plot showing pink genes where 858 

the x- and y-axes represent the absolute correlation of the pink gene with the pink eigengene and 859 

PAH diagnosis, respectively. Red and blue dots denote up- and downregulated genes in PAH 860 

lungs, respectively. EMT genes from Hallmark(13) and Wnt genes from PANTHER(69) are 861 

indicated by green and orange text, respectively, and blue text indicates genes in both gene sets. 862 

(H) Scatter plot showing expression of ANTXR1 (x-axis) vs. SFRP4 (y-axis) in PHBI lungs 863 

where yellow triangles and grey squares represent control and PAH lungs, respectively. * P < 864 

0.05, ** P < 0.01. BMPR2mut = BMPR2 mutation; KO = knockout; rE2 = deletion in exon 2; 865 

CRISPR = clustered regularly interspaced short palindromic repeats. 866 

 867 

Figure 4: Deconvolution reveals cell-type specificity in PAH lungs and modules. (A) 868 

Uniform Manifold Approximation and Projection plot showing seven publicly available human 869 

lung single-cell RNAseq datasets(34–40) integrated and reclustered in Seurat(70), totaling 870 

559,511 cells from 154 lungs. (B) Heatmap showing scaled expression of cell-type specific 871 

marker genes on the x-axis across all cell types in (A) on the y-axis. Larger size dots indicate 872 

higher fraction of cells expressing a given gene. (C) Dot plot showing Pearson correlation of 873 

deconvoluted cell type fractions with PAH vs control status across PHBI lung samples. Only 874 

correlations with P < 0.05 are shown. (D) Box plots of deconvoluted vascular cell fractions in 875 

PAH vs control lungs. (E) Heatmap showing Pearson correlation of deconvoluted cell fractions 876 

(columns) and module eigengenes (rows). Only correlations with P < 0.05 are shown. Larger 877 

size dots indicate higher absolute correlation. (F) Dot plot showing the normalized enrichment 878 

score of the pink module signature (defined as the correlation of the pink eigengene with the 879 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523812


expression of genes across the transcriptome) for known cell-type signatures from Azimuth(15) 880 

as determined by GSEA. Larger size dots indicate stronger P value. (G) Box plot showing 881 

averaged ANTXR1 expression in fibroblasts profiled by scRNAseq from 3 PAH vs 6 control 882 

lungs (32). Note, myofibroblasts were not subclustered in this dataset. (H) Box plot showing 883 

ANTXR1 expression by qPCR of pulmonary arterial adventitial cells isolated from PAH vs. 884 

control lungs (n = 4 biological replicates/group). Wilcoxon rank-sum test: * P < 0.05, ** P < 885 

0.01, *** P < 0.001, **** P < 0.0001. AbbBasaloid = aberrant basaloid; AlvProgen = alveolar 886 

progenitor; AM = alveolar macrophage; AT1 = alveolar type 1; AT2 = alveolar type 2, cDC = 887 

conventional dendritic cell; cMono = classical monocyte; EndoArt = endothelial arterial; 888 

EndoBronch = endothelial bronchial; EndoCap1 = endothelial capillary 1; EndoCap2 = 889 

endothelial capillary 2; EndoLymph = endothelial lymphatic; EndoVein = endothelial vein; Fb = 890 

fibroblast; IM = interstitial macrophage; MacProlif = macrophage proliferating; MyoFb = 891 

myofibroblast; ncMono = nonclassical monocyte; NK = natural killer; pDC = plasmacytoid 892 

dendritic cell; PNEC = pulmonary neuroendocrine cell; SMC = smooth muscle cell; Tcd8 = 893 

CD8+ T cell; Tprolif = proliferating T cell; Treg = regulatory T cell; scRNAseq = single-cell 894 

RNA sequencing; qPCR = quantitative polymerase chain reaction. 895 

 896 

Figure 5: Pharmacotranscriptomics identifies novel therapeutic targets. (A) Dot plot 897 

showing CMap score of 171 CMap classes which are groups of pharmacologic or genetic 898 

perturbagens that share the same mechanism of action or biological function. Scores approaching 899 

100 or -100 indicate perturbagens predicted to mimic or reverse the query signature, 900 

respectively. Larger size dots indicate higher absolute score. Color indicates module 901 

membership. Table on the right shows the score of select CMap classes with the rank out of 171 902 
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classes shown in parenthesis. (B) Dot plot showing CMap score of 8,559 CMap perturbagens. 903 

Table on the right shows CMap scores of USP shRNA targets. (C) Volcano plot of top 100 904 

mimickers and top 100 reversers of the pink PAH DEG signature out of a total of 7,502 genetic 905 

targets screened from the CRISPR KO consensus signature database of LINCS L1000 using 906 

SigCom(44). Z score on the x-axis indicates the degree to which the target signature mimics or 907 

reverses the pink signature. Select top mimickers and reversers that are shown in a heatmap in 908 

(D) are labeled by purple and orange, respectively. (D) Heatmap showing the relative expression 909 

of select pink lung DEGs (rows) in the signatures of select top CRISPR KO targets (columns) 910 

that are mimickers or reversers of the pink signature. Lowly ranked genes are downregulated 911 

while highly ranked genes are upregulated in the CRISPR KO vs. control. Rows are annotated on 912 

the left by red or blue to indicate upregulated or downregulated in PAH vs. control lungs, 913 

respectively. (E) Volcano plot showing upregulated and downregulated USPs in PAH lungs in 914 

red and blue, respectively. Grey dots indicate genes with FDR ≥ 0.05. USPs that were both 915 

upregulated and top hits in our CMap or CRISPR analyses are boxed. (F-G) Box plots showing 916 

mRNA expression of (F) USP28 and (G) USP12 in a human whole lung microarray of 15 PAH 917 

patients vs 11 controls(33). P values were obtained from NCBI’s GEO2R: ***P < 0.001, **** P 918 

< 0.0001. CMap = Connectivity Map; USP = ubiquitin specific peptidase; JAK inh. = Janus 919 

kinase inhibitor; CDK inh. = cyclin-dependent kinase inhibitor; shRNA = short hairpin RNA.  920 

 921 

Table 1: Patient characteristics. 922 

 PH  
(n=96) 

Control 
(n=52) 

Age, years 39.4±16.1 40.6±16.9 
Sex, female 73 (76) 18 (35) 
PH classification   
 Idiopathic PAH 41 (43)  
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 Associated PAH 38 (40)  
  CTD 11 (11)  
  CHD 19 (20)  
  Drug/toxin 8 (8)  
 Hereditary PAH 8 (8)  
 PVOD 7 (7)  
 WHO group 4 2 (2)  
Weeks since 
diagnosis 

415±331  

No. hospitalizations 4.5±3.4  
R heart failure signs 33 (34)  
WHO functional 
class 

  

 II 8 (8)  
 III 42 (44)  
 IV 39 (41)  
PFT   
 FVC, % 79.4±14.2  
 DLCO, % 64.2±25.4  
RHC   
 RA, mm Hg 11.5±6.2  
 mPAP, mm Hg 60.5±18.1  
 PCWP, mm Hg 12.7±6.0  
 PVR, Wood units 12.7±7.4  
 CO, liters/min 4.2±1.5  
 CI, liters/min/m2 2.6±0.8  
NT-proBNP, pg/ml 1993±2897  
Creatinine 1.0±0.8  
PH therapy   
 Prostacyclin infusion 82 (85)  
 Monotherapy 6 (6)  
 Double therapy 20 (21)  
 Triple therapy 70 (73)  

 923 
Available data are presented in numbers (% total), or mean +/- standard deviation 924 
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Integrative Multiomics to Dissect the Lung Transcriptional Landscape of Pulmonary 1 

Arterial Hypertension. 2 

 3 

Jason Hong, Brenda Wong, Christopher J. Rhodes, Zeyneb Kurt, Tae-Hwi Schwantes-An, 4 

Elizabeth A. Mickler, Stefan Gräf, Mélanie Eyries, Katie A. Lutz, Michael W. Pauciulo, Richard 5 

C. Trembath, David Montani, Nicholas W. Morrell, Martin R. Wilkins, William C. Nichols, 6 

David-Alexandre Trégouët, Micheala A. Aldred, Ankit A. Desai, Rubin M. Tuder, Mark W. 7 

Geraci, Mansoureh Eghbali, Robert S. Stearman, Xia Yang 8 

 9 

Supplemental Figure Legends 10 

 11 

Supplemental Figure 1: Lung transcriptomes do not cluster by transplant center nor 12 

treatment group. (A-B) PCA plots showing PCA of all 23,355 detected genes where samples 13 

are colored by (A) transplant center of tissue origin and (B) treatment group. Control samples are 14 

not shown in (B). Treatment groups refer to one or a combination of the three major classes of 15 

PAH-targeted drugs: phosphodiesterase type 5 inhibitors, endothelin receptor antagonists, and 16 

prostacyclin analogues. AH = Allegheny Hospital; BA = Baylor; CC= Cleveland Clinic, 17 

DU=Duke University; ST=Stanford; UA=University of Alabama; UC=University of California, 18 

San Diego; UM=University of Michigan; VA= Vanderbilt. 19 

 20 

Supplemental Figure 2: Modules correlated with clinical traits after adjustment for 21 

multiple testing. Heatmap showing Pearson correlations of module eigengenes with clinical and 22 

pathologic characteristics that met FDR threshold of < 0.05 after adjustment for multiple 23 
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comparisons (n=260 comparisons from 13 traits and 20 modules). Red and blue dots indicate 24 

positive and negative correlation, respectively. Larger size dots indicate stronger correlation. No. 25 

hospitalizations indicates number of hospitalizations due to PAH between the time of diagnostic 26 

RHC and lung transplantation. R heart failure signs indicate signs of right heart failure such as 27 

ascites or leg swelling. Intima and intima plus media thickness were determined by 28 

morphometric analysis of volume density of pulmonary arteries in histological lung sections. Dx 29 

= diagnosis; PFT = pulmonary function test; RHC = right heart catheterization; Histo = 30 

histology; DLCO = diffusing capacity for carbon monoxide; FVC/DLCO = ratio of forced vital 31 

capacity to DLCO; mPAP = mean pulmonary artery pressure; PVR = pulmonary vascular 32 

resistance; REVEAL = Registry to Evaluate Early and Long-Term PAH Disease Management; 33 

cor = correlation. 34 

 35 

Supplemental Figure 3: Dysregulated genes of royalblue, greenyellow and pink modules. 36 

(A-C) Volcano plots showing dysregulated genes of (A) royalblue, (B) greenyellow, and (C) 37 

pink where red, green, and grey indicate upregulation, downregulation, or no change in PAH, 38 

respectively. The top 50 (A-B) or 100 genes (C) by the absolute Wald statistic as determined by 39 

DESeq2 are labeled. FDR = false discovery rate; log2FC = log2 fold change. 40 

 41 

Supplemental Figure 4: Analysis of MAGMA and GSA-SNP2 gene scores. (A) Scatter plot 42 

showing gene scores averaged across four PAH GWAS cohorts as determined by MAGMA on 43 

the x-axis and GSA-SNP2 on the y-axis. To aggregate genetic variants into a gene score, the 44 

mean c2 statistic and the log-minimum GWAS p-value for all SNPs localizing to a gene were 45 

used in MAGMA and GSA-SNP2, respectively. (B-C) Scatter plots showing gene scores from 46 
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(B) GSA-SNP2 and (C) MAGMA plotted against gene length in base pairs. (D-E) Scatter plots 47 

showing gene scores from (D) GSA-SNP2 and (E) MAGMA plotted against the average SNP 48 

counts across four PAH GWAS cohorts. SNP counts represent the number of SNPs localizing to 49 

a given gene within 20 kilobases from the 5’ or 3’ ends of the gene. (A-E) Colors represent 50 

module membership. 51 

 52 

Supplemental Figure 5: Bayesian network analysis workflow to construct a gene regulatory 53 

network of the human lung. Bayesian networks (BNs) were constructed using Reconstructing 54 

Integrative Molecular Bayesian Network (RIMBANet)19. For this method, 1000 networks were 55 

generated from different random seed genes using continuous and discrete expression data 56 

derived from transcriptomes from either GSE23546 (n = 1343) (1), PHBI (n = 146), or GTEx v8 57 

(n = 577) (1). Whole lung-specific cis eQTLs from GTEx v8 (1) and transcription factor-target 58 

gene data from HTRI (1), TRRUST (1), and PAZAR (1) databases were used as priors. Then, the 59 

final network for each of the 3 datasets was obtained by taking a consensus network from the 60 

1000 randomly generated networks whereby only edges that passed a probability of >30% across 61 

the 1000 BNs were kept. Finally, the union of the 3 networks was taken to create a combined 62 

gene regulatory network derived from a total of 2,066 human lungs. 63 

 64 

Supplemental Figure 6: GUCY1A2 is upregulated in PAH lungs. Box plot showing 65 

GUCY1A2 expression in WHO Group 1 PAH (n = 93) vs control (n = 51) lungs from PHBI. * 66 

FDR < 0.05. 67 

 68 
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Supplemental Figure 7: Single-cell RNA sequencing and deconvolution analysis scheme. To 69 

serve as a cell type reference for deconvolution, we integrated seven publicly available human 70 

lung single-cell RNAseq datasets(29–35) and identified 37 cell-type clusters using known 71 

marker genes from the literature. Within each cell-type cluster, the average expression of gene 72 

counts were calculated across cells for each individual sample to create a cell-type signature for 73 

each of the seven datasets. PHBI bulk transcriptomes were deconvoluted with 74 

CIBERSORTx(36) with cell-type signatures from each of the seven datasets as a reference. The 75 

resulting cell fractions using each of the seven dataset-specific reference signatures served as 76 

technical replicates. These technical replicates were then averaged to determine the final 77 

estimated cell fractions for each lung sample. 78 

 79 

Supplemental Figure 8: PAH lung samples cluster together based on estimated cell 80 

fractions. (A) Heatmap showing cell fractions estimated by deconvolution of PHBI lung 81 

transcriptomes by CIBERSORTx(1). Dendrograms are shown on the left and top representing 82 

hierarchical clustering of cell types (rows) and lung samples (columns), respectively. Lung 83 

samples are annotated at the bottom to indicate PAH in red or control in grey. (B) PCA plot 84 

showing PCA of estimated cell fractions with samples colored to indicate PAH in red or control 85 

in grey. 86 

 87 

Supplemental Figure 9: Royalblue genes share similar pathways with and are hub nodes of 88 

the pink module. (A-B) Dots plots showing Gene Set Enrichment Analysis (GSEA) of the 89 

royalblue module signature using (A) Gene Ontology (GO) and (B) Hallmark(1) gene sets where 90 

y-axis represents normalized enrichment scores (NES) in which scores greater than or less than 91 
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zero represent gene sets enriched in genes positively or negatively correlated with the royalblue 92 

eigengene, respectively. The x-axis represents gene sets ordered by their enrichment score. 93 

Select top gene sets are labeled: Regulation of Wnt signaling (NES score 2.15, NES rank 14 of 94 

6,033) in (A) and Epithelial Mesenchymal Transition (NES score 2.39, NES rank 1 of 50) in (B). 95 

Dots larger in size represent higher -log10(P) values. (C) Pink subnetwork where pink genes, 96 

royalblue genes, and known PAH genes (red nodes) from disease-gene databases (Comparative 97 

Toxicogenomics Database(1) and DisGeNET(1)) were projected onto the lung Bayesian 98 

regulatory network in Figure 3A. Larger size nodes represent hub genes where node size is 99 

proportional to -log10(FDR) as determined by Key Driver Analysis (1–3). Light grey nodes 100 

represent hub genes of the pink subnetwork that are not pink, royalblue, or red genes. Note this is 101 

the same subnetwork as in Figure 3B but with royalblue genes displayed here. 102 

 103 

Supplemental Figure 10: Sex-stratified analysis of dysregulated genes, pathways and 104 

modules. (A-B) Volcano plots showing upregulated genes in PAH lungs colored in red and 105 

downregulated genes colored in green among (A) females (71 PAH vs. 17 control) and (B) males 106 

(22 PAH vs. 34 control). Grey dots indicate genes with FDR ≥ 0.05. Select genes are labeled. (C-107 

D) Bar plots showing GSEA results using the Hallmark pathway database and the DEG signature 108 

of PAH vs. control among (C) females and (D) males. Pathways enriched in genes upregulated in 109 

PAH with normalized enrichment score (NES) > 0 are colored in red and pathways enriched in 110 

downregulated genes with NES < 0 in green. Only pathways with FDR < 0.05 are shown. (E-F) 111 

Dot plots showing enrichment of modules as determined by GSEA for the PAH lung differential 112 

transcriptome among (E) females and (F) males. Larger size dots indicate stronger FDR value. 113 
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log2FC = log2 fold change; NES = normalized enrichment score; EMT = epithelial-114 

mesenchymal transition. 115 
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