40 research outputs found

    Thermal stability of Al-Cu-Fe quasicrystals prepared by SHS method

    Get PDF
    Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning) or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis) was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C

    Laser-induced reactions of 4-aminobenzenthiol species adsorbed on Ag, Au, and Cu plasmonic structures followed by SERS spectroscopy. The role of substrate and excitation energy - surface-complex photochemistry and plasmonic catalysis

    Get PDF
    This study focuses on investigating the laser-induced reactions of various surface complexes of 4-aminobenzenethiol on Ag, Au, and Cu surfaces. By utilizing different excitation wavelengths, the distinct behavior of the molecule species on the plasmonic substrates was observed. Density functional theory (DFT) calculations were employed to establish the significant role of chemical enhancement mechanisms in determining the observed behavior. The interaction between 4-aminobenzenethiol (4-ABT) molecules and plasmonic surfaces led to the formation of surface complexes with absorption bands red-shifted into the visible and near-infrared regions. Photochemical transformations were induced by excitation wavelengths from these regions, with the nature of the transformations varying based on the excitation wavelength and the plasmonic metal. Resonance with the electronic absorption transitions of these complexes amplifies surface-enhanced Raman scattering (SERS), enabling the detailed examination of ongoing processes. A kinetic study on the Ag surface revealed processes governed by both first- and second-order kinetics, attributed to the dimerization process and transformation processes of individual molecules interacting with photons or plasmons. The behavior of the molecules was found to be primarily determined by the position and variability of the band between 1170 and 1190 cm-1, with the former corresponding to molecules in the monomer state and the latter to dimerized molecules. Notably, laser-induced dimerization occurred most rapidly on the Cu surface, followed by Ag, and least on Au. These findings highlight the influence of plasmonic surfaces on molecular behavior and provide insights into the potential applications of laser-induced reactions for surface analysis and manipulation.University of Chemistry and Technology Prague; Grantová Agentura České Republiky, GA ČR, (20–08679S)Grantov? Agentura Cesk? Republiky; University of Chemistry and Technology Pragu

    Podpora cestovního ruchu v regionu Severní Moravy a Slezska prostřednictvím informačních center

    No full text
    Import 20/04/2006Prezenční výpůjčkaVŠB - Technická univerzita Ostrava. Ekonomická fakulta. Katedra (152) podnikohospodářsk

    Aluminum Alloys with the Addition of Reduced Deep-Sea Nodules

    No full text
    An innovative way to utilize deep-sea manganese nodules is described in this paper. The manganese nodules were reduced by aluminothermy and subsequently added into aluminum as a mixture of alloying elements in their natural ratio. The microstructure and properties of aluminum alloys containing 1.2, 7.7, and 9.7 wt % of reduced nodules were studied. The alloys were formed by Al matrix and minor amounts of Al6(Fe,Mn) and Al11Fe7 intermetallic phases. The alloys containing a higher amount of reduced nodules are characterized by very good thermal stability. The obtained alloys were studied by X-ray diffraction, their microstructure was observed by scanning electron microscopy, and their local chemical composition was analyzed by energy dispersive spectrometer. The hardness of the samples was measured on the initial materials and after long-term annealing. Based on the obtained results, the aluminum alloys, with the addition of reduced deep-sea nodules, can serve as precursors for processing, e.g., by rapid solidification or hot working methods

    Study of Natural and Artificial Aging on AlSi9Cu3 Alloy at Different Ratios of Returnable Material in the Batch

    No full text
    Aluminum alloys currently play an important role in the production of castings in various industries, where important requirements include low component weight, reduction of the environmental impact and, above all, reduction of production costs of castings. One way to achieve these goals is to use recycled aluminum alloys. The effect of natural and artificial aging of AlSi9Cu3 alloy with different ratios of returnable material in the batch was evaluated by a combination of optical, scanning, transmission microscope and mechanical tests. An increase in the returnable material in the batch above 70% resulted in failure to achieve the minimum value required by the standard for tensile strength and ductility. The application of artificial aging had a positive effect on the microstructure and thus on the mechanical properties of experimental alloys. By analyzing the results from TEM, it can be stated that in the given cases there is a reduced efficiency of θ’-Al2Cu precipitate formation with an increase of the returnable material in the batch and in comparison with artificial aging, which is manifested by low mechanical properties

    The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    No full text
    In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation

    Microstructure and Mechanical Properties of Ti-25Nb-4Ta-8Sn Alloy Prepared by Spark Plasma Sintering

    No full text
    As the commercially most-used Ti-6Al-4V alloy has a different modulus of elasticity compared to the modulus of elasticity of bone and contains allergenic elements, β-Ti alloy could be a suitable substitution in orthopedics. The spark plasma sintering (SPS) method is feasible for the preparation of materials, with very low porosity and fine-grained structure, leading to higher mechanical properties. In this study, we prepared quaternary Ti-25Nb-4Ta-8Sn alloy using the spark plasma sintering method. The material was also heat-treated in order to homogenize the structure and compare the microstructure and properties in as-sintered and annealed states. The SPS sample had a modulus of elasticity of about 63 ± 1 GPa, which, after annealing, increased to the value of 73 ± 1 GPa. The tensile yield strength (TYS) of the SPS sample was 730 ± 52 MPa, ultimate tensile strength (UTS) 764 ± 10 MPa, and ductility 22 ± 9%. Annealed samples reached higher values of TYS and UTS (831 ± 60 MPa and 954 ± 48 MPa), but the ductility decreased to the value of 3 ± 1%. The obtained results are discussed considering the observed microstructure of the alloy

    Rapidly Solidified Aluminium Alloy Composite with Nickel Prepared by Powder Metallurgy: Microstructure and Self-Healing Behaviour

    No full text
    Composite material prepared by spark plasma sintering (SPS) from a powder mixture of AlCrFeSi rapidly solidified alloy and 5 wt. % of Ni particles was studied in this work. It was proven that during SPS compaction at 500 °C, no intermetallic phases formed on the surface of Ni particles. The material exhibited sufficient mechanical properties obtained by tensile testing (ultimate tensile stress of 203 ± 4 MPa, ductility of 0.8% and 0.2% offset yield strength of 156 ± 2 MPa). Tensile samples were pre-stressed to 180 MPa and annealed at 450 and 550 °C for 1 h. Annealing at 450 °C did not lead to any recovery of the material. Annealing at 550 °C caused the full recovery of 0.2% offset yield strength, while the ductility was decreased. The self-healing behaviour originates from the growth of intermetallic phases between the Ni particle and the Al matrix. The sequence of NiAl, Ni2Al3 and NiAl3 intermetallic phases formation was observed. In particular, the morphology of the NiAl3 phase, growing in thin dendrites into the Al matrix, is suitable for the closing of cracks, which pass through the material
    corecore