5 research outputs found
Next-generation sequencing applications for wheat crop improvement
Bread wheat (Triticum aestivum; Poaceae) is a crop plant of great importance. It provides nearly 20% of the world' s daily food supply measured by calorie intake, similar to that provided by rice. The yield of wheat has doubled over the last 40 years due to a combination of advanced agronomic practice and improved germplasm through selective breeding. More recently, yield growth has been less dramatic, and a significant improvement in wheat production will be required if demand from the growing human population is to be met. Next-generation sequencing (NGS) technologies are revolutionizing biology and can be applied to address critical issues in plant biology. Technologies can produce draft sequences of genomes with a significant reduction to the cost and timeframe of traditional technologies. In addition, NGS technologies can be used to assess gene structure and expression, and importantly, to identify heritable genome variation underlying important agronomic traits. This review provides an overview of the wheat genome and NGS technologies, details some of the problems in applying NGS technology to wheat, and describes how NGS technologies are starting to impact wheat crop improvement
Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing
Next generation sequencing technology allows rapid re-sequencing of individuals, as well as the discovery of single nucleotide polymorphisms (SNPs), for genomic diversity and evolutionary analyses. By sequencing two isolates of the fungal plant pathogen Leptosphaeria maculans, the causal agent of blackleg disease in Brassica crops, we have generated a resource of over 76 million sequence reads aligned to the reference genome. We identified over 21,000 SNPs with an overall SNP frequency of one SNP every 2,065 bp. Sequence validation of a selection of these SNPs in additional isolates collected throughout Australia indicates a high degree of polymorphism in the Australian population. In preliminary phylogenetic analysis, isolates from Western Australia clustered together and those collected from Brassica juncea stubble were identical. These SNPs provide a novel marker resource to study the genetic diversity of this pathogen. We demonstrate that re-sequencing provides a method of validating previously characterised SNPs and analysing differences in important genes, such as the disease related avirulence genes of L. maculans. Understanding the genetic characteristics of this devastating pathogen is vital in developing long-term solutions to managing blackleg disease in Brassica crops
Riceâwheat comparative genomics: Gains and gaps
Rice and wheat provide nearly 40% of human calorie and protein requirements. They share a common ancestor and belong to the Poaceae (grass) family. Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits. Several wheat genes and gene families have been characterized based on their rice orthologs. Riceâwheat orthology can identify genetic regions that regulate similar traits in both crops. Riceâwheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping, deduce their putative functions and biochemical pathways, and develop molecular markers for marker-assisted breeding. A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering, gene editing, or wide crossing
Chronic coronary syndromes without standard modifiable cardiovascular risk factors and outcomes: the CLARIFY registry
Background and Aims:
It has been reported that patients without standard modifiable cardiovascular (CV) risk factors (SMuRFsâdiabetes, dyslipidaemia, hypertension, and smoking) presenting with first myocardial infarction (MI), especially women, have a higher in-hospital mortality than patients with risk factors, and possibly a lower long-term risk provided they survive the post-infarct period. This study aims to explore the long-term outcomes of SMuRF-less patients with stable coronary artery disease (CAD).
Methods:
CLARIFY is an observational cohort of 32 703 outpatients with stable CAD enrolled between 2009 and 2010 in 45 countries. The baseline characteristics and clinical outcomes of patients with and without SMuRFs were compared. The primary outcome was a composite of 5-year CV death or non-fatal MI. Secondary outcomes were 5-year all-cause mortality and major adverse cardiovascular events (MACEâCV death, non-fatal MI, or non-fatal stroke).
Results:
Among 22 132 patients with complete risk factor and outcome information, 977 (4.4%) were SMuRF-less. Age, sex, and time since CAD diagnosis were similar across groups. SMuRF-less patients had a lower 5-year rate of CV death or non-fatal MI (5.43% [95% CI 4.08â7.19] vs. 7.68% [95% CI 7.30â8.08], P = 0.012), all-cause mortality, and MACE. Similar results were found after adjustments. Clinical event rates increased steadily with the number of SMuRFs. The benefit of SMuRF-less status was particularly pronounced in women.
Conclusions:
SMuRF-less patients with stable CAD have a substantial but significantly lower 5-year rate of CV death or non-fatal MI than patients with risk factors. The risk of CV outcomes increases steadily with the number of risk factors