5 research outputs found

    Preliminary Results for the Multi-Robot, Multi-Partner, Multi-Mission, Planetary Exploration Analogue Campaign on Mount Etna

    Get PDF
    This paper was initially intended to report on the outcome of the twice postponed demonstration mission of the ARCHES project. Due to the global COVID pandemic, it has been postponed from 2020, then 2021, to 2022. Nevertheless, the development of our concepts and integration has progressed rapidly, and some of the preliminary results are worthwhile to share with the community to drive the dialog on robotics planetary exploration strategies. This paper includes an overview of the planned 4-week campaign, as well as the vision and relevance of the missiontowards the planned official space missions. Furthermore, the cooperative aspect of the robotic teams, the scientific motivation, the sub task achievements are summarised

    N-of-1 Trials in Pediatric Oncology: From a Population-Based Approach to Personalized Medicine—A Review

    No full text
    Pediatric oncology is a critical area where the more efficient development of new treatments is urgently needed. The speed of approval of new drugs is still limited by regulatory requirements and a lack of innovative designs appropriate for trials in children. Childhood cancers meet the criteria of rare diseases. Personalized medicine brings it even closer to the horizon of individual cases. Thus, not all the traditional research tools, such as large-scale RCTs, are always suitable or even applicable, mainly due to limited sample sizes. Small samples and traditional versus subject-specific evidence are both distinctive issues in personalized pediatric oncology. Modern analytical approaches and adaptations of the paradigms of evidence are warranted. We have reviewed innovative trial designs and analytical methods developed for small populations, together with individualized approaches, given their applicability to pediatric oncology. We discuss traditional population-based and individualized perspectives of inferences and evidence, and explain the possibilities of using various methods in pediatric personalized oncology. We find that specific derivatives of the original N-of-1 trial design adapted for pediatric personalized oncology may represent an optimal analytical tool for this area of medicine. We conclude that no particular N-of-1 strategy can provide a solution. Rather, a whole range of approaches is needed to satisfy the new inferential and analytical paradigms of modern medicine. We reveal a new view of cancer as continuum model and discuss the “evidence puzzle”

    First Results of the ROBEX Analogue Mission Campaign: Robotic Deployment of Seismic Networks for Future Lunar Missions

    Get PDF
    This paper presents first results of the analog mission campaign which was performed between the 12th of June and the 10th of July 2017 on Mount Etna in Europe, Italy. The aim of the ROBEX demonstration mission is to test and validate a complex robotic mission. This includes highly autonomous tasks with supervision from scientists to guarantee measurement of real and scientifically relevant data. The main scientific objective of the ROBEX mission, the detailed analysis of the lunar crust layers, that is replaced by the analysis of Etna lava layers in the demo mission, has been guiding the developments of the last four years. As key missions, a seismic network has been deployed and a seismic profile measurement has been conducted using only robots on the landing site. Additional experiments consisted of long term autonomous navigation, multi-robot mapping and exploration of craters as well as experiments with the aim of geological analyses and probe selection. During the one month analog campaign, a realistic mission scenario has been built up, including a control station approximately 30 km from the remote site
    corecore