16 research outputs found

    State regulation of supply chains through the introduction of goods marking

    No full text
    Among the most acute problems of the modern economy is not only reducing the cost and improving the efficiency of supply chains, but also their protection from the influence of the shadow economy. In this case, the greatest threat is the illicit trafficking of industrial products. Authors analyze state regulation of supply chains in Russia and abroad, consider the prospects for the development of digital marking and traceability of goods as a method of state regulation of supply chains. The article emphasizes that the existing marking system contains a number of shortcomings. The authors propose mechanisms to improve state regulation of supply chains in modern conditions

    Metal Nanoparticle Containing Nanocomposites of Drug Substances and Their Potential Biomedical Applications

    No full text
    New hybrid nanosystems containing the antibacterial substances dioxidine or gentamicin sulfate with bioactive metal (Ag, Cu) nanoparticles have been obtained by a cryogenic freeze-drying method and incorporate further the nanocomposites thus obtained into the cryogenically structured biopolymeric matrices based on gelatin, calcium alginate, and chitosan. FTIR, UV-visible, and NMR spectroscopy, TEM and SEM microscopy data show that the resulting systems consist of wide-porous polymer sponges (pore diameters, 10–200 μm) that contain antibacterial drugs and silver (2–30 nm) or copper (1–5 nm) nanoparticles. The investigation showed that these systems ensure a gradual release of dioxidine (from 40 min up to 3 days), depending on the nature of the matrix and its microstructure. The higher activity of hybrid composites based on nanometals and dioxidine or incorporated into cryostructured biopolymer matrices against the bacterial strains of Escherichia coli 52, Staphylococcus aureus 144 is demonstrated as compared to the individual components in the same matrices

    Cryochemical Production of Drug Nanoforms: Particle Size and Crystal Phase Control of the Antibacterial Medication 2,3-Quinoxalinedimethanol-1,4-dioxide (Dioxidine)

    No full text
    Increasing the effectiveness of known, well-tested drugs is a promising low-cost alternative to the search for new drug molecular forms. Powerful approaches to solve this problem are (a) an active drug particle size reduction down to the nanoscale and (b) thermodynamically metastable but kinetically stable crystal modifications of drug acquisition. The combined cryochemical method has been used for size and structural modifications of the antibacterial drug 2,3-quinoxalinedimethanol-1,4-dioxide (dioxidine). The main stage of the proposed technique includes the formation of a molecular vapor of the drug substance, combined with a carrier gas (CO2) flow, followed by a fast condensation of the drug substance and CO2 molecules on a cooled-by-liquid nitrogen surface of preparative cryostate. It was established that the molecular chemical structure of the drug substance remained unchanged during cryochemical modification; however, it led to a significant decrease of the drug particles’ size down to nanosizes and changes in the crystal structures of the solid drug nanoforms obtained. Varying carrier gas (CO2) flow led to changes in their solid phase composition. A higher dissolution rate and changes in antibacterial activity were demonstrated for cryomodified dioxidine samples in comparison to the properties of the initial pharmacopeia dioxidine

    Cryochemically Obtained Nanoforms of Antimicrobial Drug Substance Dioxidine and Their Physico-chemical and Structural Properties

    No full text
    Nanoforms of the antimicrobial drug substance 2,3-bis-(hydroxymethyl) quinoxaline-N,N′-dioxide with particles sizes between 50 and 300 nm were obtained by cryochemical modification of the initial pharmaceutical substance using a freeze-drying technique and were characterized by different physicochemical methods (FTIR, UV-Vis, 1H-NMR, DSC, TG and X-ray diffraction) and transmission electron microscopy (TEM). The data obtained from FTIR- and UV–Vis-spectroscopy confirmed the unaltered chemical structure of dioxidine molecules due to the cryochemical modification method. At the same time, X-ray diffraction and thermal analysis data show the change of the crystal structure compared to the parameters of the initial pharmaceutical dioxidine substance. A higher dissolution rate was revealed for cryomodified dioxidine nanoforms. The existence of three polymorphic crystal phases was established for cryomodified dioxidine samples possessed by some thermal activation processes: two anhydrous polymorphic phases, triclinic (T) and monoclinic (M), and one hydrated form (H)

    A multi-layer composite based on the 3Ni–Al system produced by a combined deformation treatment

    No full text
    Using combined deformation processing, including preliminary mechanical activation followed by consolidation via high-pressure torsion, a multi-layer nanocomposite based on nickel and aluminum is manufactured. The influence of the duration of mechanical activation on its microstructure parameters is investigated by the X-ray diffraction analysis and scanning and transmission electron microscopy. It is found out that nanostructuring of the multi-layer nanocomposite during its manufacture ensures the formation of a high density of phase and grain boundaries. It is shown that this structural transformation is accompanied by an intense strengthening effect

    A multi-layer composite based on the 3Ni–Al system produced by a combined deformation treatment

    No full text
    Using combined deformation processing, including preliminary mechanical activation followed by consolidation via high-pressure torsion, a multi-layer nanocomposite based on nickel and aluminum is manufactured. The influence of the duration of mechanical activation on its microstructure parameters is investigated by the X-ray diffraction analysis and scanning and transmission electron microscopy. It is found out that nanostructuring of the multi-layer nanocomposite during its manufacture ensures the formation of a high density of phase and grain boundaries. It is shown that this structural transformation is accompanied by an intense strengthening effect
    corecore