122 research outputs found

    The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity

    Get PDF
    What makes a material a good ice nucleating agent? Despite the importance of heterogeneous ice nucleation to a variety of fields, from cloud science to microbiology, major gaps in our understanding of this ubiquitous process still prevent us from answering this question. In this work, we have examined the ability of generic crystalline substrates to promote ice nucleation as a function of the hydrophobicity and the morphology of the surface. Nucleation rates have been obtained by brute-force molecular dynamics simulations of coarse-grained water on top of different surfaces of a model fcc crystal, varying the water-surface interaction and the surface lattice parameter. It turns out that the lattice mismatch of the surface with respect to ice, customarily regarded as the most important requirement for a good ice nucleating agent, is at most desirable but not a requirement. On the other hand, the balance between the morphology of the surface and its hydrophobicity can significantly alter the ice nucleation rate and can also lead to the formation of up to three different faces of ice on the same substrate. We have pinpointed three circumstances where heterogeneous ice nucleation can be promoted by the crystalline surface: (i) the formation of a water overlayer that acts as an in-plane template; (ii) the emergence of a contact layer buckled in an ice-like manner; and (iii) nucleation on compact surfaces with very high interaction strength. We hope that this extensive systematic study will foster future experimental work aimed at testing the physiochemical understanding presented herein.Comment: Main + S

    Benchmarking the performance of Density Functional Theory and Point Charge Force Fields in their Description of sI Methane Hydrate against Diffusion Monte Carlo

    Get PDF
    High quality reference data from diffusion Monte Carlo calculations are presented for bulk sI methane hydrate, a complex crystal exhibiting both hydrogen-bond and dispersion dominated interactions. The performance of some commonly used exchange-correlation functionals and all-atom point charge force fields is evaluated. Our results show that none of the exchange-correlation functionals tested are sufficient to describe both the energetics and the structure of methane hydrate accurately, whilst the point charge force fields perform badly in their description of the cohesive energy but fair well for the dissociation energetics. By comparing to ice Ih, we show that a good prediction of the volume and cohesive energies for the hydrate relies primarily on an accurate description of the hydrogen bonded water framework, but that to correctly predict stability of the hydrate with respect to dissociation to ice Ih and methane gas, accuracy in the water-methane interaction is also required. Our results highlight the difficulty that density functional theory faces in describing both the hydrogen bonded water framework and the dispersion bound methane.Comment: 8 pages, 4 figures, 1 table. Minor typos corrected and clarification added in Method

    Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

    Get PDF
    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insight into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that in the last few decades have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state of the art computational methods, by reviewing simulations of e.g. ice nucleation or crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insight into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that in doing so the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that by improving (i.) existing interatomic potentials; and (ii.) currently available enhanced sampling methods, the community can move towards accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments

    Crumbling Crystals: On the Dissolution Mechanism of NaCl in Water

    Full text link
    Life on Earth depends upon the dissolution of ionic salts in water, particularly NaCl. However, an atomistic scale understanding of the process remains elusive. Simulations lend themselves conveniently to studying dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally. Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment and long time scale simulations, both of which are typically hindered by computational expense. Here, we use advances in machine learning potential methodology to resolve for the first time at an ab initio level of theory the dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be explained by a strong increase in the ratio of the surface to volume of the crystal. Overall, dissolution is comprised of a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic mechanism. These atomistic level insights now pave the way for a general understanding of dissolution mechanisms in other crystals, and the methodology is primed for more complex systems of recent interest such as water/salt interfaces under flow and salt crystals under confinement

    Premier

    Full text link

    Premier

    Full text link
    corecore